Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2016, Volume 294, Pages 191–215
DOI: https://doi.org/10.1134/S0371968516030110
(Mi tm3729)
 

This article is cited in 20 scientific papers (total in 20 papers)

Polynomial dynamical systems and the Korteweg–de Vries equation

V. M. Buchstaber

Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
References:
Abstract: We explicitly construct polynomial vector fields LkLk, k=0,1,2,3,4,6k=0,1,2,3,4,6, on the complex linear space C6 with coordinates X=(x2,x3,x4) and Z=(z4,z5,z6). The fields Lk are linearly independent outside their discriminant variety ΔC6 and are tangent to this variety. We describe a polynomial Lie algebra of the fields Lk and the structure of the polynomial ring C[X,Z] as a graded module with two generators x2 and z4 over this algebra. The fields L1 and L3 commute. Any polynomial P(X,Z)C[X,Z] determines a hyperelliptic function P(X,Z)(u1,u3) of genus 2, where u1 and u3 are the coordinates of trajectories of the fields L1 and L3. The function 2x2(u1,u3) is a two-zone solution of the Korteweg–de Vries hierarchy, and z4(u1,u3)/u1=x2(u1,u3)/u3.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: May 11, 2016
English version:
Proceedings of the Steklov Institute of Mathematics, 2016, Volume 294, Pages 176–200
DOI: https://doi.org/10.1134/S0081543816060110
Bibliographic databases:
Document Type: Article
UDC: 515.178.2+517.958
Language: Russian
Citation: V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Modern problems of mathematics, mechanics, and mathematical physics. II, Collected papers, Trudy Mat. Inst. Steklova, 294, MAIK Nauka/Interperiodica, Moscow, 2016, 191–215; Proc. Steklov Inst. Math., 294 (2016), 176–200
Citation in format AMSBIB
\Bibitem{Buc16}
\by V.~M.~Buchstaber
\paper Polynomial dynamical systems and the Korteweg--de Vries equation
\inbook Modern problems of mathematics, mechanics, and mathematical physics.~II
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2016
\vol 294
\pages 191--215
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3729}
\crossref{https://doi.org/10.1134/S0371968516030110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3628500}
\elib{https://elibrary.ru/item.asp?id=26601058}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2016
\vol 294
\pages 176--200
\crossref{https://doi.org/10.1134/S0081543816060110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386554900011}
\elib{https://elibrary.ru/item.asp?id=27421251}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992135203}
Linking options:
  • https://www.mathnet.ru/eng/tm3729
  • https://doi.org/10.1134/S0371968516030110
  • https://www.mathnet.ru/eng/tm/v294/p191
  • Related presentations:
    This publication is cited in the following 20 articles:
    1. V. M. Buchstaber, E. Yu. Bunkova, “Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods”, Proc. Steklov Inst. Math., 325 (2024), 60–73  mathnet  crossref  crossref  zmath  isi
    2. E. Yu. Bunkova, V. M. Buchstaber, “Explicit Formulas for Differentiation of Hyperelliptic Functions”, Math. Notes, 114:6 (2023), 1151–1162  mathnet  crossref  crossref  mathscinet
    3. E. Yu. Bunkova, V. M. Bukhshtaber, “Parametric Korteweg–de Vries hierarchy and hyperelliptic sigma functions”, Funct. Anal. Appl., 56:3 (2022), 169–187  mathnet  crossref  crossref
    4. V. M. Buchstaber, E. Yu. Bunkova, “Hyperelliptic Sigma Functions and Adler–Moser Polynomials”, Funct. Anal. Appl., 55:3 (2021), 179–197  mathnet  crossref  crossref  isi
    5. V. M. Buchstaber, E. Yu. Bunkova, “Lie Algebras of Heat Operators in a Nonholonomic Frame”, Math. Notes, 108:1 (2020), 15–28  mathnet  crossref  crossref  mathscinet  isi  elib
    6. V. M. Buchstaber, E. Yu. Bunkova, “Sigma Functions and Lie Algebras of Schrödinger Operators”, Funct. Anal. Appl., 54:4 (2020), 229–240  mathnet  crossref  crossref  mathscinet  isi  elib
    7. T. Ayano, V. M. Buchstaber, “Analytical and number-theoretical properties of the two-dimensional sigma function”, Chebyshevskii sb., 21:1 (2020), 9–50  mathnet  crossref  mathscinet
    8. Buchstaber V.M., Enolski V.Z., Leykin D.V., “SIGMA-Functions: Old and New Results”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 2, London Mathematical Society Lecture Note Series, 459, eds. Donagi R., Shaska T., Cambridge Univ Press, 2020, 175–214  mathscinet  isi
    9. T. Ayano, V. M. Buchstaber, “Ultraelliptic integrals and two-dimensional sigma-functions”, Funct. Anal. Appl., 53:3 (2019), 157–173  mathnet  crossref  crossref  mathscinet  isi  elib
    10. Takanori Ayano, Victor M. Buchstaber, “Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3”, SIGMA, 15 (2019), 032, 15 pp.  mathnet  crossref  mathscinet
    11. E. Yu. Bunkova, “On the problem of differentiation of hyperelliptic functions”, Eur. J. Math., 5:3, SI (2019), 712–719  crossref  mathscinet  zmath  isi  scopus
    12. O. K. Sheinman, “Certain reductions of Hitchin systems of rank 2 and genera 2 and 3”, Dokl. Math., 97:2 (2018), 144–146  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    13. E. Yu. Bunkova, “Differentiation of genus 3 hyperelliptic functions”, Eur. J. Math., 4:1 (2018), 93–112  crossref  mathscinet  zmath  isi  scopus
    14. D. V. Millionshchikov, “Polynomial Lie algebras and growth of their finitely generated Lie subalgebras”, Proc. Steklov Inst. Math., 302 (2018), 298–314  mathnet  crossref  crossref  mathscinet  isi  elib
    15. V. M. Buchstaber, V. I. Dragovich, “Two-Valued Groups, Kummer Varieties, and Integrable Billiards”, Arnold Math. J., 4:1 (2018), 27–57  mathnet  crossref  scopus
    16. V. M. Buchstaber, A. V. Mikhailov, “Infinite-Dimensional Lie Algebras Determined by the Space of Symmetric Squares of Hyperelliptic Curves”, Funct. Anal. Appl., 51:1 (2017), 2–21  mathnet  crossref  crossref  mathscinet  isi  elib
    17. O. K. Sheinman, “Almost graded current algebras on the symmetric square of a curve”, Russian Math. Surveys, 72:2 (2017), 384–386  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. T. Ayano, V. M. Buchstaber, “The field of meromorphic functions on a sigma divisor of a hyperelliptic curve of genus 3 and applications”, Funct. Anal. Appl., 51:3 (2017), 162–176  mathnet  crossref  crossref  mathscinet  isi  elib
    19. V. M. Buchstaber, “Polynomial Lie algebras and the Zelmanov–Shalev theorem”, Russian Math. Surveys, 72:6 (2017), 1168–1170  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    20. V. V. Zharinov, “Hamiltonian operators in differential algebras”, Theoret. and Math. Phys., 193:3 (2017), 1725–1736  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:607
    Full-text PDF :154
    References:91
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025