Abstract:
We explicitly construct polynomial vector fields LkLk, k=0,1,2,3,4,6k=0,1,2,3,4,6, on the complex linear space C6 with coordinates X=(x2,x3,x4) and Z=(z4,z5,z6). The fields Lk are linearly independent outside their discriminant variety Δ⊂C6 and are tangent to this variety. We describe a polynomial Lie algebra of the fields Lk and the structure of the polynomial ring C[X,Z] as a graded module with two generators x2 and z4 over this algebra. The fields L1 and L3 commute. Any polynomial P(X,Z)∈C[X,Z] determines a hyperelliptic function P(X,Z)(u1,u3) of genus 2, where u1 and u3 are the coordinates of trajectories of the fields L1 and L3. The function 2x2(u1,u3) is a two-zone solution of the Korteweg–de Vries hierarchy, and ∂z4(u1,u3)/∂u1=∂x2(u1,u3)/∂u3.
Citation:
V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Modern problems of mathematics, mechanics, and mathematical physics. II, Collected papers, Trudy Mat. Inst. Steklova, 294, MAIK Nauka/Interperiodica, Moscow, 2016, 191–215; Proc. Steklov Inst. Math., 294 (2016), 176–200
This publication is cited in the following 20 articles:
V. M. Buchstaber, E. Yu. Bunkova, “Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods”, Proc. Steklov Inst. Math., 325 (2024), 60–73
E. Yu. Bunkova, V. M. Buchstaber, “Explicit Formulas for Differentiation of Hyperelliptic Functions”, Math. Notes, 114:6 (2023), 1151–1162
E. Yu. Bunkova, V. M. Bukhshtaber, “Parametric Korteweg–de Vries hierarchy and hyperelliptic sigma functions”, Funct. Anal. Appl., 56:3 (2022), 169–187
V. M. Buchstaber, E. Yu. Bunkova, “Hyperelliptic Sigma Functions and Adler–Moser Polynomials”, Funct. Anal. Appl., 55:3 (2021), 179–197
V. M. Buchstaber, E. Yu. Bunkova, “Lie Algebras of Heat Operators in a Nonholonomic Frame”, Math. Notes, 108:1 (2020), 15–28
V. M. Buchstaber, E. Yu. Bunkova, “Sigma Functions and Lie Algebras of Schrödinger Operators”, Funct. Anal. Appl., 54:4 (2020), 229–240
T. Ayano, V. M. Buchstaber, “Analytical and number-theoretical properties of the two-dimensional sigma function”, Chebyshevskii sb., 21:1 (2020), 9–50
Buchstaber V.M., Enolski V.Z., Leykin D.V., “SIGMA-Functions: Old and New Results”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 2, London Mathematical Society Lecture Note Series, 459, eds. Donagi R., Shaska T., Cambridge Univ Press, 2020, 175–214
T. Ayano, V. M. Buchstaber, “Ultraelliptic integrals and two-dimensional sigma-functions”, Funct. Anal. Appl., 53:3 (2019), 157–173
Takanori Ayano, Victor M. Buchstaber, “Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3”, SIGMA, 15 (2019), 032, 15 pp.
E. Yu. Bunkova, “On the problem of differentiation of hyperelliptic functions”, Eur. J. Math., 5:3, SI (2019), 712–719
O. K. Sheinman, “Certain reductions of Hitchin systems of rank 2 and genera 2 and 3”, Dokl. Math., 97:2 (2018), 144–146
E. Yu. Bunkova, “Differentiation of genus 3 hyperelliptic functions”, Eur. J. Math., 4:1 (2018), 93–112
D. V. Millionshchikov, “Polynomial Lie algebras and growth of their finitely generated Lie subalgebras”, Proc. Steklov Inst. Math., 302 (2018), 298–314
V. M. Buchstaber, V. I. Dragovich, “Two-Valued Groups, Kummer Varieties, and Integrable Billiards”, Arnold Math. J., 4:1 (2018), 27–57
V. M. Buchstaber, A. V. Mikhailov, “Infinite-Dimensional Lie Algebras Determined by the Space of Symmetric Squares of Hyperelliptic Curves”, Funct. Anal. Appl., 51:1 (2017), 2–21
O. K. Sheinman, “Almost graded current algebras on the symmetric square of a curve”, Russian Math. Surveys, 72:2 (2017), 384–386
T. Ayano, V. M. Buchstaber, “The field of meromorphic functions on a sigma divisor of a hyperelliptic curve of genus 3 and applications”, Funct. Anal. Appl., 51:3 (2017), 162–176
V. M. Buchstaber, “Polynomial Lie algebras and the Zelmanov–Shalev theorem”, Russian Math. Surveys, 72:6 (2017), 1168–1170
V. V. Zharinov, “Hamiltonian operators in differential algebras”, Theoret. and Math. Phys., 193:3 (2017), 1725–1736