Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2020, Volume 54, Issue 4, Pages 3–16
DOI: https://doi.org/10.4213/faa3837
(Mi faa3837)
 

This article is cited in 5 scientific papers (total in 5 papers)

Sigma Functions and Lie Algebras of Schrödinger Operators

V. M. Buchstaber, E. Yu. Bunkova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (635 kB) Citations (5)
References:
Abstract: In a 2004 paper by V. M. Buchstaber and D. V. Leikin, published in “Functional Analysis and Its Applications,” for each g>0, a system of 2g multidimensional Schrödinger equations in magnetic fields with quadratic potentials was defined. Such systems are equivalent to systems of heat equations in a nonholonomic frame. It was proved that such a system determines the sigma function of the universal hyperelliptic curve of genus g. A polynomial Lie algebra with 2g Schrödinger operators Q0,Q2,,Q4g2 as generators was introduced.
In this work, for each g>0, we obtain explicit expressions for Q0, Q2, and Q4 and recurrent formulas for Q2k with k>2 expressing these operators as elements of a polynomial Lie algebra in terms of the Lie brackets of the operators Q0, Q2, and Q4.
As an application, we obtain explicit expressions for the operators Q0,Q2,,Q4g2 for g=1,2,3,4.
Keywords: Schrödinger operator, polynomial Lie algebra, differentiation of Abelian functions with respect to parameters.
Funding agency Grant number
Russian Science Foundation 20-11-19998
Received: 21.08.2020
Revised: 21.08.2020
Accepted: 03.09.2020
English version:
Functional Analysis and Its Applications, 2020, Volume 54, Issue 4, Pages 229–240
DOI: https://doi.org/10.1134/S0016266320040012
Bibliographic databases:
Document Type: Article
UDC: 515.178.2+517.958+517.986
Language: Russian
Citation: V. M. Buchstaber, E. Yu. Bunkova, “Sigma Functions and Lie Algebras of Schrödinger Operators”, Funktsional. Anal. i Prilozhen., 54:4 (2020), 3–16; Funct. Anal. Appl., 54:4 (2020), 229–240
Citation in format AMSBIB
\Bibitem{BucBun20}
\by V.~M.~Buchstaber, E.~Yu.~Bunkova
\paper Sigma Functions and Lie Algebras of Schr\"odinger Operators
\jour Funktsional. Anal. i Prilozhen.
\yr 2020
\vol 54
\issue 4
\pages 3--16
\mathnet{http://mi.mathnet.ru/faa3837}
\crossref{https://doi.org/10.4213/faa3837}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4173020}
\elib{https://elibrary.ru/item.asp?id=46803951}
\transl
\jour Funct. Anal. Appl.
\yr 2020
\vol 54
\issue 4
\pages 229--240
\crossref{https://doi.org/10.1134/S0016266320040012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000656894500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107375835}
Linking options:
  • https://www.mathnet.ru/eng/faa3837
  • https://doi.org/10.4213/faa3837
  • https://www.mathnet.ru/eng/faa/v54/i4/p3
  • This publication is cited in the following 5 articles:
    1. Julia Bernatska, “Abelian Function Fields on Jacobian Varieties”, Axioms, 14:2 (2025), 90  crossref
    2. V. M. Buchstaber, E. Yu. Bunkova, “Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods”, Proc. Steklov Inst. Math., 325 (2024), 60–73  mathnet  crossref  crossref  zmath  isi
    3. V. M. Buchstaber, “The Mumford dynamical system and hyperelliptic Kleinian functions”, Funct. Anal. Appl., 57:4 (2023), 288–302  mathnet  crossref  crossref  mathscinet  isi
    4. E. Yu. Bunkova, V. M. Buchstaber, “Explicit Formulas for Differentiation of Hyperelliptic Functions”, Math. Notes, 114:6 (2023), 1151–1162  mathnet  crossref  crossref  mathscinet
    5. V. M. Buchstaber, E. Yu. Bunkova, “Hyperelliptic Sigma Functions and Adler–Moser Polynomials”, Funct. Anal. Appl., 55:3 (2021), 179–197  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:462
    Full-text PDF :103
    References:78
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025