Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 1, Pages 17–32
DOI: https://doi.org/10.4213/mzm12791
(Mi mzm12791)
 

This article is cited in 3 scientific papers (total in 3 papers)

Lie Algebras of Heat Operators in a Nonholonomic Frame

V. M. Buchstaber, E. Yu. Bunkova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (552 kB) Citations (3)
References:
Abstract: We construct the Lie algebras of systems of 2g graded heat operators Q0,Q2,,Q4g2 that determine the sigma functions σ(z,λ) of hyperelliptic curves of genera g=1, 2, and 3. As a corollary, we find that the system of three operators Q0, Q2, and Q4 is already sufficient for determining the sigma functions. The operator Q0 is the Euler operator, and each of the operators Q2k, k>0, determines a g-dimensional Schrödinger equation with potential quadratic in z for a nonholonomic frame of vector fields in the space C2g with coordinates λ. For any solution φ(z,λ) of the system of heat equations, we introduce the graded ring Rφ generated by the logarithmic derivatives of φ(z,λ) of order 2 and present the Lie algebra of derivations of Rφ explicitly. We show how this Lie algebra is related to our system of nonlinear equations. For φ(z,λ)=σ(z,λ), this leads to a well-known result on how to construct the Lie algebra of differentiations of hyperelliptic functions of genus g=1,2,3.
Keywords: heat operator, grading, polynomial Lie algebra, differentiation of Abelian functions over parameters.
Received: 28.10.2019
Revised: 13.02.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 1, Pages 15–28
DOI: https://doi.org/10.1134/S0001434620070020
Bibliographic databases:
Document Type: Article
UDC: 517.986
Language: Russian
Citation: V. M. Buchstaber, E. Yu. Bunkova, “Lie Algebras of Heat Operators in a Nonholonomic Frame”, Mat. Zametki, 108:1 (2020), 17–32; Math. Notes, 108:1 (2020), 15–28
Citation in format AMSBIB
\Bibitem{BucBun20}
\by V.~M.~Buchstaber, E.~Yu.~Bunkova
\paper Lie Algebras of Heat Operators in a Nonholonomic Frame
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 1
\pages 17--32
\mathnet{http://mi.mathnet.ru/mzm12791}
\crossref{https://doi.org/10.4213/mzm12791}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133396}
\elib{https://elibrary.ru/item.asp?id=45388511}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 1
\pages 15--28
\crossref{https://doi.org/10.1134/S0001434620070020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556090300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088999951}
Linking options:
  • https://www.mathnet.ru/eng/mzm12791
  • https://doi.org/10.4213/mzm12791
  • https://www.mathnet.ru/eng/mzm/v108/i1/p17
  • This publication is cited in the following 3 articles:
    1. V. M. Buchstaber, E. Yu. Bunkova, “Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods”, Proc. Steklov Inst. Math., 325 (2024), 60–73  mathnet  crossref  crossref  zmath  isi
    2. E. Yu. Bunkova, V. M. Buchstaber, “Explicit Formulas for Differentiation of Hyperelliptic Functions”, Math. Notes, 114:6 (2023), 1151–1162  mathnet  crossref  crossref  mathscinet
    3. V. M. Buchstaber, E. Yu. Bunkova, “Sigma Functions and Lie Algebras of Schrödinger Operators”, Funct. Anal. Appl., 54:4 (2020), 229–240  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:518
    Full-text PDF :101
    References:62
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025