Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2019, Volume 15, 032, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2019.032
(Mi sigma1468)
 

This article is cited in 2 scientific papers (total in 2 papers)

Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3

Takanori Ayanoa, Victor M. Buchstaberb

a Osaka City University, Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
b Steklov Mathematical Institute of Russian Academy of Sciences, 8 Gubkina Street, Moscow, 119991, Russia
Full-text PDF (396 kB) Citations (2)
References:
Abstract: Buchstaber and Mikhailov introduced the polynomial dynamical systems in C4 with two polynomial integrals on the basis of commuting vector fields on the symmetric square of hyperelliptic curves. In our previous paper, we constructed the field of meromorphic functions on the sigma divisor of hyperelliptic curves of genus 3 and solutions of the systems for g=3 by these functions. In this paper, as an application of our previous results, we construct two parametric deformation of the KdV-hierarchy. This new system is integrated in the meromorphic functions on the sigma divisor of hyperelliptic curves of genus 3. In Section 8 of our previous paper [Funct. Anal. Appl. 51 (2017), 162–176], there are miscalculations. In appendix of this paper, we correct the errors.
Keywords: Abelian functions, hyperelliptic sigma functions, polynomial dynamical systems, commuting vector fields, KdV-hierarchy.
Received: November 21, 2018; in final form April 11, 2019; Published online April 27, 2019
Bibliographic databases:
Document Type: Article
Language: English
Citation: Takanori Ayano, Victor M. Buchstaber, “Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3”, SIGMA, 15 (2019), 032, 15 pp.
Citation in format AMSBIB
\Bibitem{AyaBuc19}
\by Takanori~Ayano, Victor~M.~Buchstaber
\paper Construction of Two Parametric Deformation of KdV-Hierarchy and Solution in Terms of Meromorphic Functions on the Sigma Divisor of a Hyperelliptic Curve of Genus 3
\jour SIGMA
\yr 2019
\vol 15
\papernumber 032
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma1468}
\crossref{https://doi.org/10.3842/SIGMA.2019.032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3943460}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000469853500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068720546}
Linking options:
  • https://www.mathnet.ru/eng/sigma1468
  • https://www.mathnet.ru/eng/sigma/v15/p32
  • This publication is cited in the following 2 articles:
    1. B. Gao, Q. Yin, “Construction of invariant solutions and conservation laws to the (2+1)-dimensional integrable coupling of the KdV equation”, Bound. Value Probl., 2020:1 (2020), 169  crossref  mathscinet  isi  scopus
    2. T. Ayano, V. M. Buchstaber, “Ultraelliptic integrals and two-dimensional sigma-functions”, Funct. Anal. Appl., 53:3 (2019), 157–173  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :211
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025