Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 9, Pages 1281–1298
DOI: https://doi.org/10.1070/SM2015v206n09ABEH004496
(Mi sm8427)
 

This article is cited in 13 scientific papers (total in 14 papers)

The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities

V. N. Pavlenkoa, D. K. Potapovb

a Chelyabinsk State University
b Saint Petersburg State University
References:
Abstract: This paper is concerned with the existence of semiregular solutions to the Dirichlet problem for an equation of elliptic type with discontinuous nonlinearity and when the differential operator is not assumed to be formally self-adjoint. Theorems on the existence of semiregular (positive and negative) solutions for the problem under consideration are given, and a principle of upper and lower solutions giving the existence of semiregular solutions is established. For positive values of the spectral parameter, elliptic spectral problems with discontinuous nonlinearities are shown to have nontrivial semiregular (positive and negative) solutions.
Bibliography: 32 titles.
Keywords: spectral problems, equations of elliptic type, discontinuous nonlinearity, semiregular solutions, the method of upper and lower solutions.
Received: 01.10.2014 and 06.01.2015
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35J25, 35J60, 35P30
Language: English
Original paper language: Russian
Citation: V. N. Pavlenko, D. K. Potapov, “The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities”, Sb. Math., 206:9 (2015), 1281–1298
Citation in format AMSBIB
\Bibitem{PavPot15}
\by V.~N.~Pavlenko, D.~K.~Potapov
\paper The existence of semiregular solutions to elliptic spectral problems with discontinuous nonlinearities
\jour Sb. Math.
\yr 2015
\vol 206
\issue 9
\pages 1281--1298
\mathnet{http://mi.mathnet.ru/eng/sm8427}
\crossref{https://doi.org/10.1070/SM2015v206n09ABEH004496}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438596}
\zmath{https://zbmath.org/?q=an:1333.35144}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206.1281P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366131200004}
\elib{https://elibrary.ru/item.asp?id=24073844}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84947792220}
Linking options:
  • https://www.mathnet.ru/eng/sm8427
  • https://doi.org/10.1070/SM2015v206n09ABEH004496
  • https://www.mathnet.ru/eng/sm/v206/i9/p121
  • This publication is cited in the following 14 articles:
    1. V. N. Pavlenko, D. K. Potapov, “Semi-regular solutions of integral equations with discontinuous nonlinearities”, Math. Notes, 116:1 (2024), 93–103  mathnet  crossref  crossref
    2. O. V. Baskov, D. K. Potapov, “Existence of Solutions to the Non-Self-Adjoint Sturm–Liouville Problem with Discontinuous Nonlinearity”, Comput. Math. and Math. Phys., 64:6 (2024), 1254  crossref
    3. O. V. Baskov, D. K. Potapov, “Existence of solutions to the non-self-adjoint Sturm–Liouville problem with discontinuous nonlinearity”, Comput. Math. Math. Phys., 64:6 (2024), 1254–1260  mathnet  mathnet  crossref  crossref
    4. V. N. Pavlenko, D. K. Potapov, “Semiregular solutions of elliptic boundary-value problems with discontinuous nonlinearities of exponential growth”, Sb. Math., 213:7 (2022), 1004–1019  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. V. N. Pavlenko, D. K. Potapov, “One class of quasilinear elliptic type equations with discontinuous nonlinearities”, Izv. Math., 86:6 (2022), 1162–1178  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. V. N. Pavlenko, D. K. Potapov, “Positive solutions of superlinear elliptic problems with discontinuous non-linearities”, Izv. Math., 85:2 (2021), 262–278  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    7. V. N. Pavlenko, D. K. Potapov, “Variational method for elliptic systems with discontinuous nonlinearities”, Sb. Math., 212:5 (2021), 726–744  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    8. V. N. Pavlenko, D. K. Potapov, “Existence of Semiregular Solutions of Elliptic Systems with Discontinuous Nonlinearities”, Math. Notes, 110:2 (2021), 226–241  mathnet  crossref  crossref  isi  elib
    9. V. N. Pavlenko, D. K. Potapov, “On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity”, Izv. Math., 84:3 (2020), 592–607  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. V. N. Pavlenko, D. K. Potapov, “On the existence of three nontrivial solutions of a resonance elliptic boundary value problem with a discontinuous nonlinearity”, Differ. Equ., 56:7 (2020), 831–841  crossref  mathscinet  zmath  isi
    11. V. N. Pavlenko, D. K. Potapov, “Properties of the spectrum of an elliptic boundary value problem with a parameter and a discontinuous nonlinearity”, Sb. Math., 210:7 (2019), 1043–1066  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. S. M. Voronin, S. F. Dolbeeva, O. N. Dementev, A. A. Ershov, M. G. Lepchinskii, S. V. Matveev, N. B. Medvedeva, D. K. Potapov, E. A. Rozhdestvenskaya, E. A. Sbrodova, I. M. Sokolinskaya, A. A. Solovev, V. I. Ukhobotov, V. E. Fedorov, “K 70-letiyu professora Vyacheslava Nikolaevicha Pavlenko”, Chelyab. fiz.-matem. zhurn., 2:4 (2017), 383–387  mathnet  elib
    13. V. N. Pavlenko, D. K. Potapov, “Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities”, Siberian Math. J., 58:2 (2017), 288–295  mathnet  crossref  crossref  isi  elib  elib
    14. A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of solutions for second-order differential equations with discontinuous right-hand side”, Electron. J. Differential Equations, 2016 (2016), 124, 9 pp. http://ejde.math.txstate.edu/Volumes/2016/124/abstr.html  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:812
    Russian version PDF:149
    English version PDF:24
    References:102
    First page:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025