Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 3, Pages 592–607
DOI: https://doi.org/10.1070/IM8847
(Mi im8847)
 

This article is cited in 4 scientific papers (total in 4 papers)

On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity

V. N. Pavlenkoa, D. K. Potapovb

a Chelyabinsk State University
b Saint Petersburg State University
References:
Abstract: We study an elliptic boundary-value problem in a bounded domain with inhomogeneous Dirichlet condition, discontinuous non-linearity and a positive parameter occurring as a factor in the non-linearity. The non-linearity is in the right-hand side of the equation. It is non-positive (resp. equal to zero) for negative (resp, non-negative) values of the phase variable. Let u~(x) be a solution of the boundary-value problem with zero right-hand side (the boundary function is assumed to be positive). Putting v(x)=u(x)u~(x), we reduce the original problem to a problem with homogeneous boundary condition. The spectrum of the transformed problem consists of the values of the parameter for which this problem has a non-zero solution (the function v(x)=0 is a solution for all values of the parameter). Under certain additional restrictions we construct an iterative process converging to a minimal semiregular solution of the transformed problem for an appropriately chosen starting point. We prove that any non-empty spectrum of the boundary-value problem is a ray [λ,+), where λ>0. As an application, we consider the Gol'dshtik mathematical model for separated flows of an incompressible fluid. We show that it satisfies the hypotheses of our theorem and has a non-empty spectrum.
Keywords: elliptic boundary-value problem, problem with parameter, discontinuous non-linearity, iterative process, minimal solution, semiregular solution, spectrum, Gol'dshtik model.
Received: 25.07.2018
Revised: 25.06.2019
Bibliographic databases:
Document Type: Article
UDC: 517.95
PACS: N/A
MSC: 35J25, 35J60, 35P30
Language: English
Original paper language: Russian
Citation: V. N. Pavlenko, D. K. Potapov, “On a class of elliptic boundary-value problems with parameter and discontinuous non-linearity”, Izv. Math., 84:3 (2020), 592–607
Citation in format AMSBIB
\Bibitem{PavPot20}
\by V.~N.~Pavlenko, D.~K.~Potapov
\paper On a~class of~elliptic boundary-value problems with parameter and discontinuous non-linearity
\jour Izv. Math.
\yr 2020
\vol 84
\issue 3
\pages 592--607
\mathnet{http://mi.mathnet.ru/eng/im8847}
\crossref{https://doi.org/10.1070/IM8847}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4101836}
\zmath{https://zbmath.org/?q=an:1445.35149}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..592P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000541858800001}
\elib{https://elibrary.ru/item.asp?id=45290274}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85090914101}
Linking options:
  • https://www.mathnet.ru/eng/im8847
  • https://doi.org/10.1070/IM8847
  • https://www.mathnet.ru/eng/im/v84/i3/p168
  • This publication is cited in the following 4 articles:
    1. V. N. Pavlenko, D. K. Potapov, “Semi-regular solutions of integral equations with discontinuous nonlinearities”, Math. Notes, 116:1 (2024), 93–103  mathnet  crossref  crossref
    2. V. N. Pavlenko, D. K. Potapov, “Semiregular solutions of elliptic boundary-value problems with discontinuous nonlinearities of exponential growth”, Sb. Math., 213:7 (2022), 1004–1019  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. V. N. Pavlenko, D. K. Potapov, “One class of quasilinear elliptic type equations with discontinuous nonlinearities”, Izv. Math., 86:6 (2022), 1162–1178  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. V. N. Pavlenko, D. K. Potapov, “Positive solutions of superlinear elliptic problems with discontinuous non-linearities”, Izv. Math., 85:2 (2021), 262–278  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:497
    Russian version PDF:65
    English version PDF:42
    References:119
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025