Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2017, Volume 58, Number 2, Pages 375–385
DOI: https://doi.org/10.17377/smzh.2017.58.211
(Mi smj2866)
 

This article is cited in 4 scientific papers (total in 5 papers)

Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities

V. N. Pavlenkoa, D. K. Potapovb

a Chelyabinsk State University, Chelyabinsk, Russia
b St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (313 kB) Citations (5)
References:
Abstract: Under study are the two classes of elliptic spectral problems with homogeneous Dirichlet conditions and discontinuous nonlinearities (the parameter occurs in the nonlinearity multiplicatively). In the former case the nonlinearity is nonnegative and vanishes for the values of the phase variable not exceeding some positive number $c$; it has linear growth at infinity in the phase variable $u$ and the only discontinuity at $u=c$. We prove that for every spectral parameter greater than the minimal eigenvalue of the differential part of the equation with the homogeneous Dirichlet condition, the corresponding boundary value problem has a nontrivial strong solution. The corresponding free boundary in this case is of zero measure. A lower estimate for the spectral parameter is established as well. In the latter case the differential part of the equation is formally selfadjoint and the nonlinearity has sublinear growth at infinity. Some upper estimate for the spectral parameter is given in this case.
Keywords: nonlinear spectral problem, elliptic boundary value problem, discontinuous nonlinearity, free boundary, semiregular solution, estimates of a spectral parameter.
Received: 04.04.2016
English version:
Siberian Mathematical Journal, 2017, Volume 58, Issue 2, Pages 288–295
DOI: https://doi.org/10.1134/S0037446617020112
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35R30
Language: Russian
Citation: V. N. Pavlenko, D. K. Potapov, “Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities”, Sibirsk. Mat. Zh., 58:2 (2017), 375–385; Siberian Math. J., 58:2 (2017), 288–295
Citation in format AMSBIB
\Bibitem{PavPot17}
\by V.~N.~Pavlenko, D.~K.~Potapov
\paper Estimates for a~spectral parameter in elliptic boundary value problems with discontinuous nonlinearities
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 2
\pages 375--385
\mathnet{http://mi.mathnet.ru/smj2866}
\crossref{https://doi.org/10.17377/smzh.2017.58.211}
\elib{https://elibrary.ru/item.asp?id=29160434}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 2
\pages 288--295
\crossref{https://doi.org/10.1134/S0037446617020112}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000400087100011}
\elib{https://elibrary.ru/item.asp?id=29492265}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018823063}
Linking options:
  • https://www.mathnet.ru/eng/smj2866
  • https://www.mathnet.ru/eng/smj/v58/i2/p375
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :54
    References:48
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025