Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 9, Pages 1310–1333
DOI: https://doi.org/10.1070/SM2014v205n09ABEH004419
(Mi sm8312)
 

This article is cited in 17 scientific papers (total in 17 papers)

On the chromatic number of a space with forbidden equilateral triangle

A. E. Zvonarevab, A. M. Raigorodskiiab, D. V. Samirovb, A. A. Kharlamovaa

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Department of Innovations and High Technology, Moscow Institute of Physics and Technology
References:
Abstract: We improve the Frankl-Rödl estimate for the product of the numbers of edges in uniform hypergraphs with forbidden cardinalities of the intersection of edges. By using this estimate, we obtain explicit bounds for the chromatic number of a space with forbidden monochromatic equilateral triangles.
Bibliography: 31 titles.
Keywords: hypergraph, systems of sets with forbidden intersections, Euclidean Ramsey theory, chromatic number of a space.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00683
Ministry of Education and Science of the Russian Federation МД-6277.2013.1
НШ-2519.2012.1
Received: 12.12.2013 and 14.04.2014
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: Primary 05C65; Secondary 05C15, 05D10
Language: English
Original paper language: Russian
Citation: A. E. Zvonarev, A. M. Raigorodskii, D. V. Samirov, A. A. Kharlamova, “On the chromatic number of a space with forbidden equilateral triangle”, Sb. Math., 205:9 (2014), 1310–1333
Citation in format AMSBIB
\Bibitem{ZvoRaiSam14}
\by A.~E.~Zvonarev, A.~M.~Raigorodskii, D.~V.~Samirov, A.~A.~Kharlamova
\paper On the chromatic number of a~space with forbidden equilateral triangle
\jour Sb. Math.
\yr 2014
\vol 205
\issue 9
\pages 1310--1333
\mathnet{http://mi.mathnet.ru/eng/sm8312}
\crossref{https://doi.org/10.1070/SM2014v205n09ABEH004419}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3288426}
\zmath{https://zbmath.org/?q=an:1307.05169}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205.1310Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000345219700004}
\elib{https://elibrary.ru/item.asp?id=22834508}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84910627075}
Linking options:
  • https://www.mathnet.ru/eng/sm8312
  • https://doi.org/10.1070/SM2014v205n09ABEH004419
  • https://www.mathnet.ru/eng/sm/v205/i9/p97
  • This publication is cited in the following 17 articles:
    1. A. A. Sagdeev, “On a Frankl–Wilson Theorem”, Problems Inform. Transmission, 55:4 (2019), 376–395  mathnet  crossref  crossref  isi  elib
    2. A. A. Sagdeev, A. M. Raigorodskii, “On a Frankl-Wilson theorem and its geometric corollaries”, Acta Math. Univ. Comen., 88:3 (2019), 1029–1033  mathscinet  isi
    3. R. I. Prosanov, “Upper Bounds for the Chromatic Numbers of Euclidean Spaces with Forbidden Ramsey Sets”, Math. Notes, 103:2 (2018), 243–250  mathnet  crossref  crossref  mathscinet  isi  elib
    4. A. A. Sagdeev, “Improved Frankl–Rödl theorem and some of its geometric consequences”, Problems Inform. Transmission, 54:2 (2018), 139–164  mathnet  crossref  isi  elib
    5. A. Sagdeev, “On the Frankl–Rödl theorem”, Izv. Math., 82:6 (2018), 1196–1224  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. A. A. Sagdeev, “Exponentially Ramsey sets”, Problems Inform. Transmission, 54:4 (2018), 372–396  mathnet  crossref  isi  elib
    7. A. Sagdeev, “Lower Bounds for the Chromatic Numbers of Distance Graphs with Large Girth”, Math. Notes, 101:3 (2017), 515–528  mathnet  crossref  crossref  mathscinet  isi  elib
    8. A. M. Raigorodskii, A. A. Sagdeev, “On the chromatic number of a space with a forbidden regular simplex”, Dokl. Math., 95:1 (2017), 15–16  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    9. A. Sagdeev, “The Chromatic Number of Space with Forbidden Regular Simplex”, Math. Notes, 102:4 (2017), 541–546  mathnet  crossref  crossref  mathscinet  isi  elib
    10. R. I. Prosanov, A. M. Raigorodskii, A. A. Sagdeev, “Improvements of the Frankl-Rodl theorem and geometric consequences”, Dokl. Math., 96:1 (2017), 336–338  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    11. A. V. Bobu, A. E. Kupriyanov, A. M. Raigorodskii, “On the number of edges of a uniform hypergraph with a range of allowed intersections”, Problems Inform. Transmission, 53:4 (2017), 319–342  mathnet  crossref  isi  elib
    12. A.A. Sagdeev, “On a Frankl–Rödl theorem and its geometric corollaries”, Electronic Notes in Discrete Mathematics, 61 (2017), 1033  crossref
    13. A. V. Bobu, A. E. Kupriyanov, “On chromatic numbers of close-to-Kneser distance graphs”, Problems Inform. Transmission, 52:4 (2016), 373–390  mathnet  crossref  isi  elib
    14. A. M. Raigorodskii, “Combinatorial geometry and coding theory*”, Fund. Inform., 145:3 (2016), 359–369  crossref  mathscinet  zmath  isi  scopus
    15. A. E. Zvonarev, A. M. Raigorodskii, “Improvements of the Frankl–Rödl theorem on the number of edges of a hypergraph with forbidden intersections, and their consequences in the problem of finding the chromatic number of a space with forbidden equilateral triangle”, Proc. Steklov Inst. Math., 288 (2015), 94–104  mathnet  crossref  crossref  isi  elib  elib
    16. M. M. Pyaderkin, “On the stability of the Erdős-Ko-Rado theorem”, Dokl. Math., 91:3 (2015), 290–293  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
    17. D. V. Samirov, A. M. Raigorodskii, “Ob odnoi zadache, svyazannoi s optimalnoi raskraskoi prostranstva bez odnotsvetnykh ravnobedrennykh treugolnikov”, Trudy Moskovskogo fiziko-tekhnicheskogo instituta, 7 (2015), 39–50  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:620
    Russian version PDF:219
    English version PDF:30
    References:103
    First page:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025