Citation:
A. Sagdeev, “Lower Bounds for the Chromatic Numbers of Distance Graphs with Large Girth”, Mat. Zametki, 101:3 (2017), 430–445; Math. Notes, 101:3 (2017), 515–528
\Bibitem{Sag17}
\by A.~Sagdeev
\paper Lower Bounds for the Chromatic Numbers of Distance Graphs with Large Girth
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 3
\pages 430--445
\mathnet{http://mi.mathnet.ru/mzm11149}
\crossref{https://doi.org/10.4213/mzm11149}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3635434}
\elib{https://elibrary.ru/item.asp?id=28405156}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 3
\pages 515--528
\crossref{https://doi.org/10.1134/S0001434617030130}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401454600013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018851554}
Linking options:
https://www.mathnet.ru/eng/mzm11149
https://doi.org/10.4213/mzm11149
https://www.mathnet.ru/eng/mzm/v101/i3/p430
This publication is cited in the following 10 articles:
R. I. Prosanov, “Counterexamples to Borsuk's Conjecture with Large Girth”, Math. Notes, 105:6 (2019), 874–880
Yu. A. Demidovich, “Distance Graphs with Large Chromatic Number and without Cliques of Given Size in the Rational Space”, Math. Notes, 106:1 (2019), 38–51
A. A. Sagdeev, A. M. Raigorodskii, “On a Frankl-Wilson theorem and its geometric corollaries”, Acta Math. Univ. Comen., 88:3 (2019), 1029–1033
R. I. Prosanov, “Upper Bounds for the Chromatic Numbers of Euclidean Spaces with Forbidden Ramsey Sets”, Math. Notes, 103:2 (2018), 243–250
A. A. Sagdeev, “Improved Frankl–Rödl theorem and some of its geometric consequences”, Problems Inform. Transmission, 54:2 (2018), 139–164
A. Sagdeev, “On the Frankl–Rödl theorem”, Izv. Math., 82:6 (2018), 1196–1224
A. Sagdeev, “The Chromatic Number of Space with Forbidden Regular Simplex”, Math. Notes, 102:4 (2017), 541–546
Prosanov R.I., Raigorodskii A.M., Sagdeev A.A., “Improvements of the Frankl-Rodl Theorem and Geometric Consequences”, Dokl. Math., 96:1 (2017), 336–338
A. V. Bobu, A. E. Kupriyanov, A. M. Raigorodskii, “On the number of edges of a uniform hypergraph with a range of allowed intersections”, Problems Inform. Transmission, 53:4 (2017), 319–342
Roman Prosanov, Andrei Raigorodskii, Arsenii Sagdeev, “ULUChShENIYa TEOREMY FRANKLA–REDLYa I GEOMETRIChESKIE SLEDSTVIYa”, Doklady Akademii nauk, 2017, no. 2, 137