Processing math: 100%
Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2017, Volume 53, Issue 4, Pages 16–42 (Mi ppi2250)  

This article is cited in 12 scientific papers (total in 12 papers)

Coding Theory

On the number of edges of a uniform hypergraph with a range of allowed intersections

A. V. Bobua, A. E. Kupriyanova, A. M. Raigorodskiibac

a Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Department of Innovation and High Technology, Moscow Institute of Physics and Technology (State University), Moscow, Russia
c Institute of Mathematics and Computer Science, Buryat State University, Ulan-Ude, Russia
References:
Abstract: We study the quantity p(n,k,t1,t2) equal to the maximum number of edges in a k-uniform hypergraph having the property that all cardinalities of pairwise intersections of edges lie in the interval [t1,t2]. We present previously known upper and lower bounds on this quantity and analyze their interrelations. We obtain new bounds on p(n,k,t1,t2) and consider their possible applications in combinatorial geometry problems. For some values of the parameters we explicitly evaluate the quantity in question. We also give a new bound on the size of a constant-weight error-correcting code.
Received: 27.01.2017
Revised: 25.06.2017
English version:
Problems of Information Transmission, 2017, Volume 53, Issue 4, Pages 319–342
DOI: https://doi.org/10.1134/S0032946017040020
Bibliographic databases:
Document Type: Article
UDC: 621.391.1+519.1
Language: Russian
Citation: A. V. Bobu, A. E. Kupriyanov, A. M. Raigorodskii, “On the number of edges of a uniform hypergraph with a range of allowed intersections”, Probl. Peredachi Inf., 53:4 (2017), 16–42; Problems Inform. Transmission, 53:4 (2017), 319–342
Citation in format AMSBIB
\Bibitem{BobKupRai17}
\by A.~V.~Bobu, A.~E.~Kupriyanov, A.~M.~Raigorodskii
\paper On the number of edges of a~uniform hypergraph with a~range of allowed intersections
\jour Probl. Peredachi Inf.
\yr 2017
\vol 53
\issue 4
\pages 16--42
\mathnet{http://mi.mathnet.ru/ppi2250}
\elib{https://elibrary.ru/item.asp?id=30729589}
\transl
\jour Problems Inform. Transmission
\yr 2017
\vol 53
\issue 4
\pages 319--342
\crossref{https://doi.org/10.1134/S0032946017040020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000424343800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85041497702}
Linking options:
  • https://www.mathnet.ru/eng/ppi2250
  • https://www.mathnet.ru/eng/ppi/v53/i4/p16
  • This publication is cited in the following 12 articles:
    1. Evgeniya Egorova, Vladislav Leonov, Aleksey Mokryakov, Vladimir Tsurkov, “Finding Set Extreme 3-Uniform Hypergraphs Cardinality through Second-Order Signatures”, Axioms, 13:6 (2024), 364  crossref
    2. I. S. Beretskii, E. K. Egorova, A. V. Mokryakov, V. I. Tsurkov, “Combination of Bases and an Evaluation of the Set of Extremal 3-Uniform Hypergraphs”, J. Comput. Syst. Sci. Int., 62:5 (2023), 827  crossref
    3. Evgeniya Egorova, Aleksey Mokryakov, Vladimir Tsurkov, “The Algebra of Signatures for Extreme Two-Uniform Hypergraphs”, Axioms, 12:12 (2023), 1123  crossref
    4. T. Yu. Goltsova, E. K. Egorova, V. Yu. Leonov, A. V. Mokryakov, “First and Second Order Signatures of Extreme Uniform Hypergraphs and Their Relationship with Vectors of the Vertex Degrees”, J. Comput. Syst. Sci. Int., 62:4 (2023), 675  crossref
    5. D. A. Zakharov, “Chromatic Numbers of Some Distance Graphs”, Math. Notes, 107:2 (2020), 238–246  mathnet  crossref  crossref  mathscinet  isi  elib
    6. Ph. A. Pushnyakov, A. M. Raigorodskii, “Estimate of the Number of Edges in Special Subgraphs of a Distance Graph”, Math. Notes, 107:2 (2020), 322–332  mathnet  crossref  crossref  isi  elib
    7. A. V. Bobu, A. E. Kupriyanov, A. M. Raigorodskii, “A Generalization of Kneser Graphs”, Math. Notes, 107:3 (2020), 392–403  mathnet  crossref  crossref  mathscinet  isi
    8. D. A. Zakharov, A. M. Raigorodskii, “Clique Chromatic Numbers of Intersection Graphs”, Math. Notes, 105:1 (2019), 137–139  mathnet  crossref  crossref  mathscinet  isi  elib
    9. A. V. Bobu, A. E. Kupriyanov, “Refinement of Lower Bounds of the Chromatic Number of a Space with Forbidden One-Color Triangles”, Math. Notes, 105:3 (2019), 329–341  mathnet  crossref  crossref  mathscinet  isi  elib
    10. Ph. A. Pushnyakov, “The Number of Edges in Induced Subgraphs of Some Distance Graphs”, Math. Notes, 105:4 (2019), 582–591  mathnet  crossref  crossref  mathscinet  isi  elib
    11. A. Sagdeev, “On the Frankl–Rödl theorem”, Izv. Math., 82:6 (2018), 1196–1224  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. A. A. Sagdeev, “Exponentially Ramsey sets”, Problems Inform. Transmission, 54:4 (2018), 372–396  mathnet  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:392
    Full-text PDF :68
    References:54
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025