Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 3, Pages 351–365
DOI: https://doi.org/10.4213/mzm12205
(Mi mzm12205)
 

This article is cited in 13 scientific papers (total in 13 papers)

A Generalization of Kneser Graphs

A. V. Bobua, A. E. Kupriyanova, A. M. Raigorodskiibacd

a Lomonosov Moscow State University
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
c Caucasus Mathematical Center, Adyghe State University, Maikop
d Buryat State University, Institute for Mathematics and Informatics, Ulan-Ude
References:
Abstract: Graphs which are analogs of Kneser graphs are studied. The problem of determining the chromatic numbers of these graphs is considered. It is shown that their structure is similar to that of Kneser graphs. Upper and lower bounds for the chromatic numbers of the graphs under examination are obtained. For certain parameter values, an order-sharp estimate of the chromatic numbers is found, and in some cases, the exact value of the quantity in question is determined.
Keywords: Kneser's conjecture, Kneser graphs, topological method.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00355
Ministry of Education and Science of the Russian Federation НШ-6760.2018.1
This work was supported by the Russian Foundation for Basic Research under grant 18-01-00355 and by the Presidential Program for the State Support of Leading Scientific Schools under grant NSh-6760.2018.1.
Received: 01.10.2018
Revised: 23.05.2019
English version:
Mathematical Notes, 2020, Volume 107, Issue 3, Pages 392–403
DOI: https://doi.org/10.1134/S0001434620030037
Bibliographic databases:
Document Type: Article
UDC: 517.179.4
Language: Russian
Citation: A. V. Bobu, A. E. Kupriyanov, A. M. Raigorodskii, “A Generalization of Kneser Graphs”, Mat. Zametki, 107:3 (2020), 351–365; Math. Notes, 107:3 (2020), 392–403
Citation in format AMSBIB
\Bibitem{BobKupRai20}
\by A.~V.~Bobu, A.~E.~Kupriyanov, A.~M.~Raigorodskii
\paper A Generalization of Kneser Graphs
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 3
\pages 351--365
\mathnet{http://mi.mathnet.ru/mzm12205}
\crossref{https://doi.org/10.4213/mzm12205}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070857}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 3
\pages 392--403
\crossref{https://doi.org/10.1134/S0001434620030037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528213700003}
Linking options:
  • https://www.mathnet.ru/eng/mzm12205
  • https://doi.org/10.4213/mzm12205
  • https://www.mathnet.ru/eng/mzm/v107/i3/p351
  • This publication is cited in the following 13 articles:
    1. M.M. Ipatov, M.M. Koshelev, A.M. Raigorodskii, “Modularity of some distance graphs”, European Journal of Combinatorics, 117 (2024), 103833  crossref  mathscinet
    2. A. M. Raigorodskii, V. S. Karas, “Asymptotics of the Independence Number of a Random Subgraph of the Graph G(n,r,<s)”, Math. Notes, 111:1 (2022), 124–131  mathnet  crossref  crossref  mathscinet  isi
    3. A. M. Raigorodskii, “Asimptotika chisla nezavisimosti sluchainogo podgrafa grafa G(n,r,<s)”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 205, VINITI RAN, M., 2022, 16–21  mathnet  crossref
    4. Ya. K. Shubin, “On the Minimal Number of Edges in Induced Subgraphs of Special Distance Graphs”, Math. Notes, 111:6 (2022), 961–969  mathnet  crossref  crossref
    5. V. S. Karas, A. M. Raigorodskii, “On Ramsey numbers for arbitrary sequences of graphs”, Dokl. Math., 105:1 (2022), 14–17  mathnet  crossref  crossref  mathscinet  elib
    6. Y. Susanti, S. Wahyuni, A. Sutjijana, S. Sutopo, I. Ernanto, “Generalized arithmetic staircase graphs and their total edge irregularity strengths”, Symmetry, 14:9 (2022), 1853  crossref
    7. A. V. Berdnikov, A. M. Raigorodskii, “Bounds on Borsuk numbers in distance graphs of a special type”, Problems Inform. Transmission, 57:2 (2021), 136–142  mathnet  crossref  crossref  isi
    8. N. A. Dubinin, “New Turán type bounds for Johnson graphs”, Problems Inform. Transmission, 57:4 (2021), 373–379  mathnet  crossref  crossref  isi
    9. Mikhail Ipatov, “Exact modularity of line graphs of complete graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 61  crossref  mathscinet
    10. Mikhail Koshelev, “New lower bound on the modularity of Johnson graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 77  crossref
    11. Mikhail M. Koshelev, “Lower bounds on the clique-chromatic numbers of some distance graphs”, Moscow J. Comb. Number Th., 10:2 (2021), 141  crossref
    12. P. A. Ogarok, A. M. Raigorodskii, “On stability of the independence number of a certain distance graph”, Problems Inform. Transmission, 56:4 (2020), 345–357  mathnet  crossref  crossref  isi
    13. A. M. Raigorodskii, “On dividing sets into parts of smaller diameter”, Dokl. Math., 102:3 (2020), 510–512  mathnet  crossref  crossref  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:469
    Full-text PDF :81
    References:61
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025