Abstract:
The probabilistic version of a classical problem of extremal combinatorics is considered. The stability theorem which says that the independence number of a random subgraph of the graph G(n,r,s) remains asymptotically constant when edges are randomly removed is generalized to the case of nonconstant parameters.
Keywords:
graph G(n,r,s), independence number, random subgraph, s-intersecting set, asymptotics.
Citation:
A. M. Raigorodskii, V. S. Karas, “Asymptotics of the Independence Number of a Random Subgraph of the Graph G(n,r,<s)”, Mat. Zametki, 111:1 (2022), 107–116; Math. Notes, 111:1 (2022), 124–131
\Bibitem{RaiKar22}
\by A.~M.~Raigorodskii, V.~S.~Karas
\paper Asymptotics of the Independence Number of a Random Subgraph of the Graph~$G(n,r,<s)$
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 1
\pages 107--116
\mathnet{http://mi.mathnet.ru/mzm12722}
\crossref{https://doi.org/10.4213/mzm12722}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4360087}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 1
\pages 124--131
\crossref{https://doi.org/10.1134/S0001434622010138}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000760397500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85119617889}
Linking options:
https://www.mathnet.ru/eng/mzm12722
https://doi.org/10.4213/mzm12722
https://www.mathnet.ru/eng/mzm/v111/i1/p107
This publication is cited in the following 2 articles:
J. Zou, H. Li, S. Zhang, C. Ye, “Generalized connectivity of the Mycielskian graph under g-extra restriction”, Mathematics, 11:19 (2023), 4043
V. O. Kirova, A. A. Sagdeev, “Two-colorings of normed spaces with no long monochromatic unit arithmetic progressions”, Dokl. Math., 106:2 (2022), 348–350