Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 105, Issue 4, Pages 592–602
DOI: https://doi.org/10.4213/mzm11942
(Mi mzm11942)
 

This article is cited in 19 scientific papers (total in 19 papers)

The Number of Edges in Induced Subgraphs of Some Distance Graphs

Ph. A. Pushnyakov

Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
References:
Abstract: We obtain new estimates for the number of edges in induced subgraphs of some distance graph.
Keywords: distance graph, Turán's theorem.
Received: 25.01.2018
Revised: 16.03.2018
English version:
Mathematical Notes, 2019, Volume 105, Issue 4, Pages 582–591
DOI: https://doi.org/10.1134/S0001434619030313
Bibliographic databases:
Document Type: Article
MSC: 05D05
Language: Russian
Citation: Ph. A. Pushnyakov, “The Number of Edges in Induced Subgraphs of Some Distance Graphs”, Mat. Zametki, 105:4 (2019), 592–602; Math. Notes, 105:4 (2019), 582–591
Citation in format AMSBIB
\Bibitem{Pus19}
\by Ph.~A.~Pushnyakov
\paper The Number of Edges in Induced Subgraphs of Some Distance Graphs
\jour Mat. Zametki
\yr 2019
\vol 105
\issue 4
\pages 592--602
\mathnet{http://mi.mathnet.ru/mzm11942}
\crossref{https://doi.org/10.4213/mzm11942}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3942814}
\elib{https://elibrary.ru/item.asp?id=37180564}
\transl
\jour Math. Notes
\yr 2019
\vol 105
\issue 4
\pages 582--591
\crossref{https://doi.org/10.1134/S0001434619030313}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000467561600031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065660408}
Linking options:
  • https://www.mathnet.ru/eng/mzm11942
  • https://doi.org/10.4213/mzm11942
  • https://www.mathnet.ru/eng/mzm/v105/i4/p592
  • This publication is cited in the following 19 articles:
    1. E. A. Neustroeva, A. M. Raigorodskii, “Estimates of the Number of Edges in Subgraphs of Johnson Graphs”, Math. Notes, 115:2 (2024), 223–231  mathnet  crossref  crossref  mathscinet
    2. N. A. Dubinin, E. A. Neustroeva, A. M. Raigorodskii, Ya. K. Shubin, “Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph”, Sb. Math., 215:5 (2024), 634–657  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. M.M. Ipatov, M.M. Koshelev, A.M. Raigorodskii, “Modularity of some distance graphs”, European Journal of Combinatorics, 117 (2024), 103833  crossref  mathscinet
    4. Ya. K. Shubin, “On the Minimal Number of Edges in Induced Subgraphs of Special Distance Graphs”, Math. Notes, 111:6 (2022), 961–969  mathnet  crossref  crossref
    5. N. A. Dubinin, “New Turán type bounds for Johnson graphs”, Problems Inform. Transmission, 57:4 (2021), 373–379  mathnet  crossref  crossref  isi
    6. Mikhail M. Koshelev, “Lower bounds on the clique-chromatic numbers of some distance graphs”, Moscow J. Comb. Number Th., 10:2 (2021), 141  crossref
    7. Mikhail Koshelev, “New lower bound on the modularity of Johnson graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 77  crossref
    8. Mikhail Ipatov, “Exact modularity of line graphs of complete graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 61  crossref  mathscinet
    9. Nikita Derevyanko, Mikhail Koshelev, Andrei Raigorodskii, Trends in Mathematics, 14, Extended Abstracts EuroComb 2021, 2021, 221  crossref
    10. Ph. A. Pushnyakov, A. M. Raigorodskii, “Estimate of the Number of Edges in Special Subgraphs of a Distance Graph”, Math. Notes, 107:2 (2020), 322–332  mathnet  crossref  crossref  isi  elib
    11. M. M. Ipatov, M. Koshelev, A. M. Raigorodskii, “Modularity of some distance graphs”, Dokl. Math., 101:1 (2020), 60–61  mathnet  crossref  crossref  zmath  elib
    12. A. M. Raigorodskii, M. Koshelev, “New bounds for the clique-chromatic numbers of Johnson graphs”, Dokl. Math., 101:1 (2020), 66–67  mathnet  crossref  crossref  zmath  elib
    13. A. M. Raigorodskii, M. M. Koshelev, “New bounds on clique-chromatic numbers of johnson graphs”, Discret Appl. Math., 283 (2020), 724–729  crossref  mathscinet  zmath  isi
    14. P. A. Ogarok, A. M. Raigorodskii, “On stability of the independence number of a certain distance graph”, Problems Inform. Transmission, 56:4 (2020), 345–357  mathnet  crossref  crossref  isi
    15. A. A. Sagdeev, “On the Chromatic Numbers Corresponding to Exponentially Ramsey Sets”, J Math Sci, 247:3 (2020), 488  crossref  mathscinet
    16. M. M. Pyaderkin, “On Threshold Probability for the Stability of Independent Sets in Distance Graphs”, Math. Notes, 106:2 (2019), 274–285  mathnet  crossref  crossref  mathscinet  isi  elib
    17. A. A. Sagdeev, “On a Frankl–Wilson Theorem”, Problems Inform. Transmission, 55:4 (2019), 376–395  mathnet  crossref  crossref  isi  elib
    18. Raigorodskii A.M. Shishunov E.D., “On the Independence Numbers of Distance Graphs With Vertices in (-1,0,1)(N)”, Dokl. Math., 100:2 (2019), 476–477  crossref  mathscinet  zmath  isi
    19. A. A. Sokolov, A. M. Raigorodskii, “O ratsionalnykh analogakh problem Nelsona–Khadvigera i Borsuka”, Chebyshevskii sb., 19:3 (2018), 270–281  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:386
    Full-text PDF :49
    References:46
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025