Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 106, Issue 2, Pages 280–294
DOI: https://doi.org/10.4213/mzm11993
(Mi mzm11993)
 

This article is cited in 8 scientific papers (total in 8 papers)

On Threshold Probability for the Stability of Independent Sets in Distance Graphs

M. M. Pyaderkinab

a Lomonosov Moscow State University
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
Full-text PDF (564 kB) Citations (8)
References:
Abstract: This paper considers the so-called distance graph G(n,r,s); its vertices can be identified with the r-element subsets of the set {1,2,,n}, and two vertices are joined by an edge if the size of the intersection of the corresponding subsets equals s. Note that, in the case s=0, such graphs are known as Kneser graphs. These graphs are closely related to the Erdős–Ko–Rado problem; they also play an important role in combinatorial geometry and coding theory. We study properties of random subgraphs of the graph G(n,r,s) in the Erdős–Rényi model, in which each edge is included in the subgraph with a certain fixed probability p independently of the other edges. It is known that if r>2s+1, then, for p=1/2, the size of an independent set is asymptotically stable in the sense that the independence number of a random subgraph is asymptotically equal to that of the initial graph G(n,r,s). This gives rise to the question of how small p must be for asymptotic stability to cease. The main result of this paper is the answer to this question.
Keywords: random graph, distance graph, independence number, threshold probability.
Funding agency Grant number
Russian Science Foundation 16-11-10014
This work was supported by the Russian Science Foundation under grant 16-11-10014.
Received: 09.03.2018
Revised: 17.09.2018
English version:
Mathematical Notes, 2019, Volume 106, Issue 2, Pages 274–285
DOI: https://doi.org/10.1134/S0001434619070307
Bibliographic databases:
Document Type: Article
UDC: 519.179.4
Language: Russian
Citation: M. M. Pyaderkin, “On Threshold Probability for the Stability of Independent Sets in Distance Graphs”, Mat. Zametki, 106:2 (2019), 280–294; Math. Notes, 106:2 (2019), 274–285
Citation in format AMSBIB
\Bibitem{Pya19}
\by M.~M.~Pyaderkin
\paper On Threshold Probability for the Stability of Independent Sets in Distance Graphs
\jour Mat. Zametki
\yr 2019
\vol 106
\issue 2
\pages 280--294
\mathnet{http://mi.mathnet.ru/mzm11993}
\crossref{https://doi.org/10.4213/mzm11993}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985706}
\elib{https://elibrary.ru/item.asp?id=38590321}
\transl
\jour Math. Notes
\yr 2019
\vol 106
\issue 2
\pages 274--285
\crossref{https://doi.org/10.1134/S0001434619070307}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483778800030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071615181}
Linking options:
  • https://www.mathnet.ru/eng/mzm11993
  • https://doi.org/10.4213/mzm11993
  • https://www.mathnet.ru/eng/mzm/v106/i2/p280
  • This publication is cited in the following 8 articles:
    1. A. M. Raigorodskii, V. S. Karas, “Asymptotics of the Independence Number of a Random Subgraph of the Graph G(n,r,<s)”, Math. Notes, 111:1 (2022), 124–131  mathnet  crossref  crossref  mathscinet  isi
    2. A. M. Raigorodskii, “Asimptotika chisla nezavisimosti sluchainogo podgrafa grafa G(n,r,<s)”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 205, VINITI RAN, M., 2022, 16–21  mathnet  crossref
    3. V. S. Karas, A. M. Raigorodskii, “On Ramsey numbers for arbitrary sequences of graphs”, Dokl. Math., 105:1 (2022), 14–17  mathnet  crossref  crossref  mathscinet  elib
    4. V. S. Karas, P. A. Ogarok, A. M. Raigorodskii, “Asymptotics of the independence number of a random subgraph of the graph G(n,r,<s)”, Dokl. Math., 104:1 (2021), 173–174  mathnet  crossref  crossref  zmath  elib
    5. Mikhail Koshelev, “New lower bound on the modularity of Johnson graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 77  crossref  mathscinet
    6. Mikhail Ipatov, “Exact modularity of line graphs of complete graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 61  crossref  mathscinet
    7. K. Kovalenko, “On the independence number and the chromatic number of generalized preferential attachment models”, Discret Appl. Math., 285 (2020), 301–306  crossref  mathscinet  zmath  isi  scopus
    8. P. A. Ogarok, A. M. Raigorodskii, “On stability of the independence number of a certain distance graph”, Problems Inform. Transmission, 56:4 (2020), 345–357  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:334
    Full-text PDF :58
    References:52
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025