Abstract:
The classical problem of estimating the number of edges in a subgraph of a special distance graph is considered. Old results are significantly improved.
This work was supported
by the Russian Foundation for Basic Research
under grant 18-01-00355
and by the program “Leading Scientific Schools”
under grant NSh-6760.2018.1.
Citation:
Ph. A. Pushnyakov, A. M. Raigorodskii, “Estimate of the Number of Edges in Special Subgraphs of a Distance Graph”, Mat. Zametki, 107:2 (2020), 286–298; Math. Notes, 107:2 (2020), 322–332
\Bibitem{PusRai20}
\by Ph.~A.~Pushnyakov, A.~M.~Raigorodskii
\paper Estimate of the Number of Edges in Special Subgraphs of a Distance Graph
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 2
\pages 286--298
\mathnet{http://mi.mathnet.ru/mzm12088}
\crossref{https://doi.org/10.4213/mzm12088}
\elib{https://elibrary.ru/item.asp?id=43245827}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 2
\pages 322--332
\crossref{https://doi.org/10.1134/S0001434620010320}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000519555100032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85078306519}
Linking options:
https://www.mathnet.ru/eng/mzm12088
https://doi.org/10.4213/mzm12088
https://www.mathnet.ru/eng/mzm/v107/i2/p286
This publication is cited in the following 15 articles:
E. A. Neustroeva, A. M. Raigorodskii, “Estimates of the Number of Edges in Subgraphs of Johnson Graphs”, Math. Notes, 115:2 (2024), 223–231
N. A. Dubinin, E. A. Neustroeva, A. M. Raigorodskii, Ya. K. Shubin, “Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph”, Sb. Math., 215:5 (2024), 634–657
A. M. Raigorodskii, “Asimptotika chisla nezavisimosti sluchainogo podgrafa grafa G(n,r,<s)”, Geometriya i mekhanika, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 205, VINITI RAN, M., 2022, 16–21
Ya. K. Shubin, “On the Minimal Number of Edges in Induced Subgraphs of Special Distance Graphs”, Math. Notes, 111:6 (2022), 961–969
V. S. Karas, A. M. Raigorodskii, “On Ramsey numbers for arbitrary sequences of graphs”, Dokl. Math., 105:1 (2022), 14–17
Yu. A. Demidovich, M. E. Zhukovskii, “Chromatic Numbers of Distance Graphs without Short Odd Cycles in Rational Spaces”, Math. Notes, 109:5 (2021), 727–734
A. V. Berdnikov, A. M. Raigorodskii, “Bounds on Borsuk numbers in distance graphs of a special type”, Problems Inform. Transmission, 57:2 (2021), 136–142
Ph. A. Pushnyakov, A. M. Raigorodskii, “Estimate of the number of edges in subgraphs of a Johnson graph”, Dokl. Math., 104:1 (2021), 193–195
V. S. Karas, P. A. Ogarok, A. M. Raigorodskii, “Asymptotics of the independence number of a random subgraph of the graph G(n,r,<s)”, Dokl. Math., 104:1 (2021), 173–174
Mikhail M. Koshelev, “Lower bounds on the clique-chromatic numbers of some distance graphs”, Moscow J. Comb. Number Th., 10:2 (2021), 141
Mikhail Koshelev, “New lower bound on the modularity of Johnson graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 77
Mikhail Ipatov, “Exact modularity of line graphs of complete graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 61
P. A. Ogarok, A. M. Raigorodskii, “On stability of the independence number of a certain distance graph”, Problems Inform. Transmission, 56:4 (2020), 345–357
A. M. Raigorodskii, “On dividing sets into parts of smaller diameter”, Dokl. Math., 102:3 (2020), 510–512
A.M. Raigorodskii, M.M. Koshelev, “New bounds on clique-chromatic numbers of Johnson graphs”, Discrete Applied Mathematics, 283 (2020), 724