Loading [MathJax]/jax/output/CommonHTML/jax.js
Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2021, Volume 499, Pages 40–43
DOI: https://doi.org/10.31857/S2686954321040135
(Mi danma187)
 

This article is cited in 7 scientific papers (total in 7 papers)

MATHEMATICS

Estimate of the number of edges in subgraphs of a Johnson graph

Ph. A. Pushnyakova, A. M. Raigorodskiiabcd

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow oblast, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Caucasus Mathematical Center, Adyghe State University, Maykop, Republic of Adygea, Russia
d Buryat State University, Institute for Mathematics and Informatics, Ulan-Ude, Buryat Republic, Russia
Full-text PDF (104 kB) Citations (7)
References:
Abstract: New estimates for the minimum number of edges in subgraphs of a Johnson graph are obtained.
Keywords: Johnson graph, distance graphs, Turán's theorem.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00355
Ministry of Education and Science of the Russian Federation НШ-6760.2018.1
This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00355) and by President’s grant NSh-6760.2018.1.
Presented: V. V. Kozlov
Received: 01.11.2019
Revised: 09.05.2021
Accepted: 16.05.2021
English version:
Doklady Mathematics, 2021, Volume 104, Issue 1, Pages 193–195
DOI: https://doi.org/10.1134/S106456242104013X
Bibliographic databases:
Document Type: Article
UDC: 519.1
Language: Russian
Citation: Ph. A. Pushnyakov, A. M. Raigorodskii, “Estimate of the number of edges in subgraphs of a Johnson graph”, Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021), 40–43; Dokl. Math., 104:1 (2021), 193–195
Citation in format AMSBIB
\Bibitem{PusRai21}
\by Ph.~A.~Pushnyakov, A.~M.~Raigorodskii
\paper Estimate of the number of edges in subgraphs of a Johnson graph
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2021
\vol 499
\pages 40--43
\mathnet{http://mi.mathnet.ru/danma187}
\crossref{https://doi.org/10.31857/S2686954321040135}
\zmath{https://zbmath.org/?q=an:1478.05077}
\elib{https://elibrary.ru/item.asp?id=46532752}
\transl
\jour Dokl. Math.
\yr 2021
\vol 104
\issue 1
\pages 193--195
\crossref{https://doi.org/10.1134/S106456242104013X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85115436343}
Linking options:
  • https://www.mathnet.ru/eng/danma187
  • https://www.mathnet.ru/eng/danma/v499/p40
  • This publication is cited in the following 7 articles:
    1. E. A. Neustroeva, A. M. Raigorodskii, “Estimates of the Number of Edges in Subgraphs of Johnson Graphs”, Math. Notes, 115:2 (2024), 223–231  mathnet  crossref  crossref  mathscinet
    2. A. M. Raigorodskii, V. S. Karas, “Asymptotics of the Independence Number of a Random Subgraph of the Graph G(n,r,<s)”, Math. Notes, 111:1 (2022), 124–131  mathnet  mathnet  crossref  crossref  mathscinet  isi  scopus
    3. Ya. K. Shubin, “On the Minimal Number of Edges in Induced Subgraphs of Special Distance Graphs”, Math. Notes, 111:6 (2022), 961–969  mathnet  mathnet  crossref  crossref  mathscinet  scopus
    4. V. O. Kirova, A. A. Sagdeev, “Two-colorings of normed spaces with no long monochromatic unit arithmetic progressions”, Dokl. Math., 106:2 (2022), 348–350  mathnet  mathnet  crossref  crossref  mathscinet
    5. V. S. Karas, A. M. Raigorodskii, “On Ramsey numbers for arbitrary sequences of graphs”, Dokl. Math., 105:1 (2022), 14–17  mathnet  mathnet  crossref  crossref  mathscinet
    6. N. A. Dubinin, “New Turán type bounds for Johnson graphs”, Problems Inform. Transmission, 57:4 (2021), 373–379  mathnet  crossref  crossref  isi
    7. V. S. Karas, P. A. Ogarok, A. M. Raigorodskii, “Asymptotics of the independence number of a random subgraph of the graph G(n,r,<s)”, Dokl. Math., 104:1 (2021), 173–174  mathnet  crossref  crossref  zmath  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:162
    Full-text PDF :48
    References:23
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025