Abstract:
The chromatic number of a Euclidean space $\mathbb R^n$ with a forbidden finite set $C$ of points is the least number of colors required to color the points of this space so that no monochromatic set is congruent to $C$. New upper bounds for this quantity are found.
Keywords:
Euclidean Ramsey theory, chromatic number of space.
Citation:
R. I. Prosanov, “Upper Bounds for the Chromatic Numbers of Euclidean Spaces with Forbidden Ramsey Sets”, Mat. Zametki, 103:2 (2018), 248–257; Math. Notes, 103:2 (2018), 243–250
This publication is cited in the following 16 articles:
Nóra Frankl, Andrey Kupavskii, Arsenii Sagdeev, “Max-norm Ramsey theory”, European Journal of Combinatorics, 118 (2024), 103918
V. Kirova, A. Sagdeev, “Two-colorings of normed spaces without long monochromatic unit arithmetic progressions”, SIAM J. Discrete Math., 37:2 (2023), 718
A. B. Kupavskii, A. A. Sagdeev, N. Frankl, “Infinite sets can be Ramsey in the Chebyshev metric”, Russian Math. Surveys, 77:3 (2022), 549–551
V. O. Kirova, A. A. Sagdeev, “Two-colorings of normed spaces with no long monochromatic unit arithmetic progressions”, Dokl. Math., 106:2 (2022), 348–350
A. Kupavskii, A. Sagdeev, “All finite sets are Ramsey in the maximum norm”, Forum Math. Sigma, 9 (2021), e55
R. Prosanov, “A new proof of the larman-rogers upper bound for the chromatic number of the euclidean space”, Discret Appl. Math., 276:SI (2020), 115–120
A. A. Sagdeev, “On the Chromatic Numbers Corresponding to Exponentially Ramsey Sets”, J Math Sci, 247:3 (2020), 488
L. I. Bogolubsky, A. M. Raigorodskii, “A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics $\ell_1$ and $\ell_2$”, Math. Notes, 105:2 (2019), 180–203
A. A. Sagdeev, “On a Frankl–Wilson Theorem”, Problems Inform. Transmission, 55:4 (2019), 376–395
A. A. Sagdeev, A. M. Raigorodskii, “On a Frankl-Wilson theorem and its geometric corollaries”, Acta Math. Univ. Comen., 88:3 (2019), 1029–1033
A. A. Sagdeev, “Improved Frankl–Rödl theorem and some of its geometric consequences”, Problems Inform. Transmission, 54:2 (2018), 139–164
A. Sagdeev, “On the Frankl–Rödl theorem”, Izv. Math., 82:6 (2018), 1196–1224
A. A. Sagdeev, “Exponentially Ramsey sets”, Problems Inform. Transmission, 54:4 (2018), 372–396
A. A. Sagdeev, “O khromaticheskikh chislakh, sootvetstvuyuschikh eksponentsialno ramseevskim mnozhestvam”, Kombinatorika i teoriya grafov. X, Zap. nauchn. sem. POMI, 475, POMI, SPb., 2018, 174–189
Roman Prosanov, “Chromatic numbers of spheres”, Discrete Mathematics, 341:11 (2018), 3123