Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 2, Pages 248–257
DOI: https://doi.org/10.4213/mzm11397
(Mi mzm11397)
 

This article is cited in 16 scientific papers (total in 16 papers)

Upper Bounds for the Chromatic Numbers of Euclidean Spaces with Forbidden Ramsey Sets

R. I. Prosanov

Lomonosov Moscow State University
References:
Abstract: The chromatic number of a Euclidean space $\mathbb R^n$ with a forbidden finite set $C$ of points is the least number of colors required to color the points of this space so that no monochromatic set is congruent to $C$. New upper bounds for this quantity are found.
Keywords: Euclidean Ramsey theory, chromatic number of space.
Received: 01.10.2016
Revised: 07.02.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 2, Pages 243–250
DOI: https://doi.org/10.1134/S000143461801025X
Bibliographic databases:
Document Type: Article
UDC: 514.17
Language: Russian
Citation: R. I. Prosanov, “Upper Bounds for the Chromatic Numbers of Euclidean Spaces with Forbidden Ramsey Sets”, Mat. Zametki, 103:2 (2018), 248–257; Math. Notes, 103:2 (2018), 243–250
Citation in format AMSBIB
\Bibitem{Pro18}
\by R.~I.~Prosanov
\paper Upper Bounds for the Chromatic Numbers of Euclidean Spaces with Forbidden Ramsey Sets
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 2
\pages 248--257
\mathnet{http://mi.mathnet.ru/mzm11397}
\crossref{https://doi.org/10.4213/mzm11397}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3749609}
\elib{https://elibrary.ru/item.asp?id=32428092}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 2
\pages 243--250
\crossref{https://doi.org/10.1134/S000143461801025X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427616800025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043974789}
Linking options:
  • https://www.mathnet.ru/eng/mzm11397
  • https://doi.org/10.4213/mzm11397
  • https://www.mathnet.ru/eng/mzm/v103/i2/p248
  • This publication is cited in the following 16 articles:
    1. Nóra Frankl, Andrey Kupavskii, Arsenii Sagdeev, “Max-norm Ramsey theory”, European Journal of Combinatorics, 118 (2024), 103918  crossref  mathscinet
    2. V. Kirova, A. Sagdeev, “Two-colorings of normed spaces without long monochromatic unit arithmetic progressions”, SIAM J. Discrete Math., 37:2 (2023), 718  crossref  mathscinet
    3. A. B. Kupavskii, A. A. Sagdeev, N. Frankl, “Infinite sets can be Ramsey in the Chebyshev metric”, Russian Math. Surveys, 77:3 (2022), 549–551  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. V. O. Kirova, A. A. Sagdeev, “Two-colorings of normed spaces with no long monochromatic unit arithmetic progressions”, Dokl. Math., 106:2 (2022), 348–350  mathnet  crossref  crossref  mathscinet  elib
    5. A. Kupavskii, A. Sagdeev, “All finite sets are Ramsey in the maximum norm”, Forum Math. Sigma, 9 (2021), e55  crossref  mathscinet  isi
    6. Nóra Frankl, Andrey Kupavskii, Arsenii Sagdeev, Trends in Mathematics, 14, Extended Abstracts EuroComb 2021, 2021, 477  crossref
    7. R. Prosanov, “A new proof of the larman-rogers upper bound for the chromatic number of the euclidean space”, Discret Appl. Math., 276:SI (2020), 115–120  crossref  mathscinet  zmath  isi  scopus
    8. A. A. Sagdeev, “On the Chromatic Numbers Corresponding to Exponentially Ramsey Sets”, J Math Sci, 247:3 (2020), 488  crossref  mathscinet
    9. L. I. Bogolubsky, A. M. Raigorodskii, “A Remark on Lower Bounds for the Chromatic Numbers of Spaces of Small Dimension with Metrics $\ell_1$ and $\ell_2$”, Math. Notes, 105:2 (2019), 180–203  mathnet  crossref  crossref  mathscinet  isi  elib
    10. A. A. Sagdeev, “On a Frankl–Wilson Theorem”, Problems Inform. Transmission, 55:4 (2019), 376–395  mathnet  crossref  crossref  isi  elib
    11. A. A. Sagdeev, A. M. Raigorodskii, “On a Frankl-Wilson theorem and its geometric corollaries”, Acta Math. Univ. Comen., 88:3 (2019), 1029–1033  mathscinet  isi
    12. A. A. Sagdeev, “Improved Frankl–Rödl theorem and some of its geometric consequences”, Problems Inform. Transmission, 54:2 (2018), 139–164  mathnet  crossref  isi  elib
    13. A. Sagdeev, “On the Frankl–Rödl theorem”, Izv. Math., 82:6 (2018), 1196–1224  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. A. A. Sagdeev, “Exponentially Ramsey sets”, Problems Inform. Transmission, 54:4 (2018), 372–396  mathnet  crossref  isi  elib
    15. A. A. Sagdeev, “O khromaticheskikh chislakh, sootvetstvuyuschikh eksponentsialno ramseevskim mnozhestvam”, Kombinatorika i teoriya grafov. X, Zap. nauchn. sem. POMI, 475, POMI, SPb., 2018, 174–189  mathnet
    16. Roman Prosanov, “Chromatic numbers of spheres”, Discrete Mathematics, 341:11 (2018), 3123  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:478
    Full-text PDF :73
    References:58
    First page:21
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025