Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 10, Pages 1443–1463
DOI: https://doi.org/10.1070/SM1996v187n10ABEH000163
(Mi sm163)
 

This article is cited in 12 scientific papers (total in 12 papers)

Several integral estimates of the derivatives of rational functions on sets of finite density

V. I. Danchenko

Vladimir State Technical University
References:
Abstract: Majorizing sums of special form are constructed for rational functions and their derivatives R(μ)(z)R(μ)(z) (here μ=0,1,μ=0,1,, zC). As a consequence, several estimates of R(μ) in integral metrics are obtained on rectifiable curves Γ of finite density ω(Γ)=sup{mes1(ΓΔ)/diamΔ}, where the supremum is taken over all open discs Δ. Certain estimates on sets that are not necessarily connected are also obtained.
Received: 09.12.1994
Bibliographic databases:
UDC: 517.53
MSC: 30A10
Language: English
Original paper language: Russian
Citation: V. I. Danchenko, “Several integral estimates of the derivatives of rational functions on sets of finite density”, Sb. Math., 187:10 (1996), 1443–1463
Citation in format AMSBIB
\Bibitem{Dan96}
\by V.~I.~Danchenko
\paper Several integral estimates of the~derivatives of rational functions on sets of finite density
\jour Sb. Math.
\yr 1996
\vol 187
\issue 10
\pages 1443--1463
\mathnet{http://mi.mathnet.ru/eng/sm163}
\crossref{https://doi.org/10.1070/SM1996v187n10ABEH000163}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1438975}
\zmath{https://zbmath.org/?q=an:0866.30002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WE55900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030300527}
Linking options:
  • https://www.mathnet.ru/eng/sm163
  • https://doi.org/10.1070/SM1996v187n10ABEH000163
  • https://www.mathnet.ru/eng/sm/v187/i10/p33
  • This publication is cited in the following 12 articles:
    1. F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. A. D. Baranov, I. R. Kayumov, “Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains”, Sb. Math., 214:12 (2023), 1674–1693  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. A. D. Baranov, I. R. Kayumov, “Estimates for the integrals of derivatives of rational functions in multiply connected domains in the plane”, Izv. Math., 86:5 (2022), 839–851  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. A. D. Baranov, I. R. Kayumov, “Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries”, Russian Math. Surveys, 77:6 (2022), 1152–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. A. D. Baranov, I. R. Kayumov, “Integral estimates of derivatives of rational functions in Hölder domains”, Dokl. Math., 106:3 (2022), 416–422  mathnet  crossref  crossref  mathscinet  elib
    6. Akturk M.A., Lukashov A., “Sharp Markov-type inequalities for rational functions on several intervals”, J. Math. Anal. Appl., 436:2 (2016), 1017–1022  crossref  mathscinet  zmath  isi  scopus
    7. V. I. Danchenko, “Convergence of simple partial fractions in $L_p(\mathbb R)$”, Sb. Math., 201:7 (2010), 985–997  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    8. V. I. Danchenko, “Estimates of derivatives of simplest fractions and other questions”, Sb. Math., 197:4 (2006), 505–524  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    9. A. L. Lukashov, “Inequalities for derivatives of rational functions on several intervals”, Izv. Math., 68:3 (2004), 543–565  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    10. A. A. Pekarskii, “Bernstein type inequalities for arbitrary rational functions in the spaces $L_p$, $0<p<1$, on Lavrent'ev curves”, St. Petersburg Math. J., 16:3 (2005), 541–560  mathnet  crossref  mathscinet  zmath
    11. V. I. Danchenko, “Estimates of Green potentials. Applications”, Sb. Math., 194:1 (2003), 63–88  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. D. Ya. Danchenko, “On interpolation in the classes $E^p$”, Math. Notes, 66:3 (1999), 388–392  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:472
    Russian version PDF:209
    English version PDF:21
    References:51
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025