Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 7, Pages 985–997
DOI: https://doi.org/10.1070/SM2010v201n07ABEH004099
(Mi sm7596)
 

This article is cited in 15 scientific papers (total in 15 papers)

Convergence of simple partial fractions in $L_p(\mathbb R)$

V. I. Danchenko

Vladimir State University
References:
Abstract: The convergence in the $L_p(\mathbb R)$-metric of series whose partial sums are simple partial fractions is investigated. Several convergence conditions in terms of sequences of poles of these series are obtained.
Bibliography: 12 titles.
Keywords: simple partial fractions, duality, sparse sequences.
Received: 24.06.2009 and 05.04.2010
Bibliographic databases:
Document Type: Article
UDC: 517.538.52
MSC: Primary 41A25; Secondary 30B50
Language: English
Original paper language: Russian
Citation: V. I. Danchenko, “Convergence of simple partial fractions in $L_p(\mathbb R)$”, Sb. Math., 201:7 (2010), 985–997
Citation in format AMSBIB
\Bibitem{Dan10}
\by V.~I.~Danchenko
\paper Convergence of simple partial fractions in~$L_p(\mathbb R)$
\jour Sb. Math.
\yr 2010
\vol 201
\issue 7
\pages 985--997
\mathnet{http://mi.mathnet.ru/eng/sm7596}
\crossref{https://doi.org/10.1070/SM2010v201n07ABEH004099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2907814}
\zmath{https://zbmath.org/?q=an:1202.41012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..985D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281540900003}
\elib{https://elibrary.ru/item.asp?id=19066216}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958589628}
Linking options:
  • https://www.mathnet.ru/eng/sm7596
  • https://doi.org/10.1070/SM2010v201n07ABEH004099
  • https://www.mathnet.ru/eng/sm/v201/i7/p53
  • This publication is cited in the following 15 articles:
    1. Komarov M.A., “Approximation to Constant Functions By Electrostatic Fields Due to Electrons and Positrons”, Lobachevskii J. Math., 40:1, SI (2019), 79–84  crossref  mathscinet  zmath  isi  scopus
    2. M. A. Komarov, “Approximation by linear fractional transformations of simple partial fractions and their differences”, Russian Math. (Iz. VUZ), 62:3 (2018), 23–33  mathnet  crossref  isi
    3. Chunaev P. Danchenko V., “Quadrature Formulas With Variable Nodes and Jackson-Nikolskii Inequalities For Rational Functions”, J. Approx. Theory, 228 (2018), 1–20  crossref  mathscinet  zmath  isi  scopus  scopus
    4. M. A. Komarov, “On approximation by special differences of simplest fractions”, St. Petersburg Math. J., 30:4 (2019), 655–665  mathnet  crossref  mathscinet  isi  elib
    5. V. I. Danchenko, M. A. Komarov, P. V. Chunaev, “Extremal and approximative properties of simple partial fractions”, Russian Math. (Iz. VUZ), 62:12 (2018), 6–41  mathnet  crossref  isi
    6. M. A. Komarov, “Criteria for the Best Approximation by Simple Partial Fractions on Semi-Axis and Axis”, J Math Sci, 235:2 (2018), 168  crossref
    7. V. I. Danchenko, L. A. Semin, “Sharp quadrature formulas and inequalities between various metrics for rational functions”, Siberian Math. J., 57:2 (2016), 218–229  mathnet  crossref  crossref  mathscinet  isi  elib
    8. M. A. Komarov, “A criterion for the best uniform approximation by simple partial fractions in terms of alternance”, Izv. Math., 79:3 (2015), 431–448  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. V. I. Danchenko, A. E. Dodonov, “Estimates for $L_p$-norms of simple partial fractions”, Russian Math. (Iz. VUZ), 58:6 (2014), 6–15  mathnet  crossref
    10. M. A. Komarov, “An example of nonuniqueness of a simple partial fraction of the best uniform approximation”, Russian Math. (Iz. VUZ), 57:9 (2013), 22–30  mathnet  crossref
    11. I. R. Kayumov, A. V. Kayumova, “Convergence of the imaginary parts of simplest fractions in $L_p(\mathbb R)$ for $p<1$”, J. Math. Sci. (N. Y.), 202:4 (2014), 553–559  mathnet  crossref
    12. I. R. Kayumov, “Integral bounds for simple partial fractions”, Russian Math. (Iz. VUZ), 56:4 (2012), 27–37  mathnet  crossref  mathscinet
    13. I. R. Kayumov, “A Necessary Condition for the Convergence of Simple Partial Fractions in $L_p(\mathbb R)$”, Math. Notes, 92:1 (2012), 140–143  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    14. A. V. Kayumova, “Skhodimost ryadov prostykh drobei v $L_p(\mathbb R)$”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 1, Izd-vo Kazanskogo un-ta, Kazan, 2012, 208–213  mathnet
    15. I. R. Kayumov, “Convergence of series of simple partial fractions in $L_p(\mathbb R)$”, Sb. Math., 202:10 (2011), 1493–1504  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:776
    Russian version PDF:249
    English version PDF:20
    References:98
    First page:45
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025