Abstract:
Given a bounded rational function of degree $n$ in a Hölder domain in the complex plane, it is shown that the area integral of the modulus of its derivative is bounded by a quantity of order $\sqrt{\log n}$. The obtained inequality improves a classical result of E.P. Dolzhenko (1966), as well as some of our recent results. Examples are constructed illustrating the influence of the length of the boundary on the behavior of area integrals of the moduli of the derivatives of bounded rational functions.
Citation:
A. D. Baranov, I. R. Kayumov, “Integral estimates of derivatives of rational functions in Hölder domains”, Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022), 15–21; Dokl. Math., 106:3 (2022), 416–422
\Bibitem{BarKay22}
\by A.~D.~Baranov, I.~R.~Kayumov
\paper Integral estimates of derivatives of rational functions in H\"older domains
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2022
\vol 507
\pages 15--21
\mathnet{http://mi.mathnet.ru/danma311}
\crossref{https://doi.org/10.31857/S2686954322600471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4563839}
\elib{https://elibrary.ru/item.asp?id=49991277}
\transl
\jour Dokl. Math.
\yr 2022
\vol 106
\issue 3
\pages 416--422
\crossref{https://doi.org/10.1134/S1064562422700077}
Linking options:
https://www.mathnet.ru/eng/danma311
https://www.mathnet.ru/eng/danma/v507/p15
This publication is cited in the following 2 articles:
F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271
A. D. Baranov, I. R. Kayumov, “Estimates for integrals of derivatives of $n$-valent functions and geometric properties of domains”, Sb. Math., 214:12 (2023), 1674–1693