Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1992, Volume 73, Issue 1, Pages 171–194
DOI: https://doi.org/10.1070/SM1992v073n01ABEH002540
(Mi sm1324)
 

This article is cited in 38 scientific papers (total in 38 papers)

On the existence of boundary values of solutions of an elliptic equation

A. K. Gushchin, V. P. Mikhailov
References:
Abstract: A test is established for the existence of a boundary value for the solution of the elliptic second order equation
ni,j=1(aij(x)uxi(x))xj=f(x)divF(x),xQ.
In this connection, it is proved that the solution has a property (uCn1(¯Q)) similar to continuity with respect to all variables in ¯Q, and that its boundary value u|QL2(Q) is the limit in L2 of the traces of the solution on surfaces in a large class (which are not necessarily “parallel” to the boundary).
Received: 04.12.1990
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 35J67
Language: English
Original paper language: Russian
Citation: A. K. Gushchin, V. P. Mikhailov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194
Citation in format AMSBIB
\Bibitem{GusMik91}
\by A.~K.~Gushchin, V.~P.~Mikhailov
\paper On~the existence of boundary values of solutions of an elliptic equation
\jour Math. USSR-Sb.
\yr 1992
\vol 73
\issue 1
\pages 171--194
\mathnet{http://mi.mathnet.ru/eng/sm1324}
\crossref{https://doi.org/10.1070/SM1992v073n01ABEH002540}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1126153}
\zmath{https://zbmath.org/?q=an:0781.35020}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992SbMat..73..171G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992KA53500010}
Linking options:
  • https://www.mathnet.ru/eng/sm1324
  • https://doi.org/10.1070/SM1992v073n01ABEH002540
  • https://www.mathnet.ru/eng/sm/v182/i6/p787
  • This publication is cited in the following 38 articles:
    1. A. K. Gushchin, “On Dirichlet problem”, Theoret. and Math. Phys., 218:1 (2024), 51–67  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. A. K. Gushchin, “On some properties of elliptic partial differential equation solutions”, Int. J. Mod. Phys. A, 37:20 (2022), 2243002–9  mathnet  crossref
    3. A. K. Gushchin, “Extensions of the space of continuous functions and embedding theorems”, Sb. Math., 211:11 (2020), 1551–1567  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. A. K. Gushchin, “The boundary values of solutions of an elliptic equation”, Sb. Math., 210:12 (2019), 1724–1752  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    5. A. K. Gushchin, “On the Existence of $L_2$ Boundary Values of Solutions to an Elliptic Equation”, Proc. Steklov Inst. Math., 306 (2019), 47–65  mathnet  crossref  crossref  mathscinet  isi  elib
    6. A. K. Gushchin, “A criterion for the existence of $L_p$ boundary values of solutions to an elliptic equation”, Proc. Steklov Inst. Math., 301 (2018), 44–64  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    7. N. A. Gusev, “On the definitions of boundary values of generalized solutions to an elliptic-type equation”, Proc. Steklov Inst. Math., 301 (2018), 39–43  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    8. Vlasov I V., “Hardy Spaces, Approximation Issues and Boundary Value Problems”, Eurasian Math. J., 9:3 (2018), 85–94  mathnet  crossref  mathscinet  isi  scopus
    9. Petrushko I.M. Petrushko M.I., “On the First Mixed Problem in l-P, P > 1, For the Degenerating on the Boundary Parabolic Equations of Second Order”, AIP Conference Proceedings, 2048, ed. Pasheva V. Popivanov N. Venkov G., Amer Inst Physics, 2018, 040006  crossref  isi
    10. Petrushko I.M., “On Boundary and Initial Values of Solutions of a Second-Order Parabolic Equation That Degenerate on the Domain Boundary”, Dokl. Math., 96:3 (2017), 568–570  crossref  mathscinet  zmath  isi
    11. A. K. Guschin, “O zadache Dirikhle dlya ellipticheskogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:1 (2015), 19–43  mathnet  crossref  zmath  elib
    12. A. K. Gushchin, “V.A. Steklov's work on equations of mathematical physics and development of his results in this field”, Proc. Steklov Inst. Math., 289 (2015), 134–151  mathnet  crossref  crossref  isi  elib
    13. A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation”, Sb. Math., 206:10 (2015), 1410–1439  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. Dumanyan V.Zh., “on Solvability of the Dirichlet Problem With the Boundary Function in l (2) For a Second-Order Elliptic Equation”, J. Contemp. Math. Anal.-Armen. Aca., 50:4 (2015), 153–166  crossref  mathscinet  zmath  isi
    15. V. Zh. Dumanyan, “Solvability of the Dirichlet problem for second-order elliptic equations”, Theoret. and Math. Phys., 180:2 (2014), 917–931  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    16. V. P. Mikhailov, “O suschestvovanii granichnykh znachenii u reshenii ellipticheskikh uravnenii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(30) (2013), 97–105  mathnet  crossref
    17. A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    18. A. K. Guschin, “Otsenki resheniya zadachi Dirikhle s granichnoi funktsiei iz $L_p$”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(22) (2011), 53–67  mathnet  crossref  elib
    19. V. Zh. Dumanyan, “Solvability of the Dirichlet problem for a general second-order elliptic equation”, Sb. Math., 202:7 (2011), 1001–1020  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    20. Dumanyan V.Zh., “Solvability of the Dirichlet Problem for the General Second-Order Elliptic Equation”, Dokl. Math., 83:1 (2011), 30–33  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1991 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:825
    Russian version PDF:196
    English version PDF:41
    References:102
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025