Abstract:
This paper extends the Sturm–Liouville oscillation theory on the distribution of zeros of eigenfunctions to the case of problems with strong singularities of the coefficients (of δ-function type). For instance, these are problems arising in the study of eigenoscillations of an elastic continuum with concentrated masses and localized interactions with the surrounding medium. The extension of the standard description of the problem is carried out by replacing the usual form of the ordinary differential equation
−(pu′)′+qu=λmu
by the substantially more general form
−(pu′)(x)+(pu′)(0)+∫x0udQ=λ∫x0udM
with absolutely continuous solutions whose derivatives, as well as the coefficients p, Q, M, belong to BV[0,l]. The integral is understood in the Stieltjes sense.
Citation:
Yu. V. Pokornyi, M. B. Zvereva, S. A. Shabrov, “Sturm–Liouville oscillation theory for impulsive problems”, Russian Math. Surveys, 63:1 (2008), 109–153
M. Yu. Vatolkin, “Investigation of the Asymptotics of the Eigenvalues of a Second-Order Quasidifferential Boundary Value Problem”, Russ Math., 68:3 (2024), 11
M. B. Zvereva, “The Problem of Deformations of a Singular String with a Nonlinear Boundary Condition”, Lobachevskii J Math, 45:1 (2024), 555
M. B. Zvereva, “A Model of String System Deformations on a Star Graph with Nonlinear Condition at the Node”, J Math Sci, 283:1 (2024), 76
M. Yu. Vatolkin, “On the Approximation of the First Eigenvalue of Some Boundary Value Problems”, Comput. Math. and Math. Phys., 64:6 (2024), 1224
M. Yu. Vatolkin, “Investigation of the Dimension of the Spectral Projection of a Self-Adjoint Second-Order Quasidifferential Operator”, Russ Math., 68:7 (2024), 34
M. Yu. Vatolkin, “On the approximation of the first eigenvalue of some boundary value problems”, Comput. Math. Math. Phys., 64:6 (2024), 1224–1239
M. Sh. Burlutskaya, M. B. Zvereva, M. I. Kamenskii, “Boundary Value Problem on a Geometric Star-Graph with a Nonlinear Condition at a Node”, Math. Notes, 114:2 (2023), 275–279
M. B. Zvereva, “Model deformatsii sistemy stiltesovskikh strun s nelineinym usloviem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 528–545
M. B. Zvereva, “Model deformatsii strunnoi sistemy na grafe-zvezde s nelineinym usloviem v uzle”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 68, no. 4, Rossiiskii universitet druzhby narodov, M., 2022, 635–652
D. A. Chechin, A. D. Baev, S. A. Shabrov, “Ob odnoi granichnoi zadache s razryvnymi resheniyami i silnoi nelineinostyu”, Materialy Voronezhskoi vesennei matematicheskoi shkoly
«Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 193, VINITI RAN, M., 2021, 153–157
S. A. Shabrov, M. V. Shabrova, E. A. Shaina, “Ob utochnenii skorosti rosta sobstvennykh znachenii odnoi spektralnoi zadachi chetvertogo poryadka s proizvodnymi po mere”, Materialy Voronezhskoi vesennei matematicheskoi shkoly
«Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 4, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 193, VINITI RAN, M., 2021, 158–162
Kamenskii M., Fitte Paul Raynaud de, Wong N.-Ch., Zvereva M., “A Model of Deformations of a Discontinuous Stieltjes String With a Nonlinear Boundary Condition”, J. Nonlinear Var. Anal., 5:5 (2021), 737–759
Kamenskii M., Wen Ch.-F., Zvereva M., “on a Variational Problem For a Model of a Stieltjes String With a Backlash At the End”, Optimization, 69:9 (2020), 1935–1959
Anna V.S., “Linguistic Means of Expressing Objective Epistemic Modality in Scientific Discourse”, Nauch. Dialog, 2020, no. 4, 151–163
A. D. Baev, D. A. Chechin, M. B. Zvereva, S. A. Shabrov, “Stieltjes differential in impulse nonlinear problems”, Dokl. Math., 101:1 (2020), 5–8
Borodina E.A., Shabrov S.A., Shabrova V M., Applied Mathematics, Computational Science and Mechanics: Current Problems, Journal of Physics Conference Series, 1479, IOP Publishing Ltd, 2020
Shabrov S.A., Ilina Ol'ga M., Shaina E.A., Chechin D.A., Applied Mathematics, Computational Science and Mechanics: Current Problems, Journal of Physics Conference Series, 1479, IOP Publishing Ltd, 2020
Kamenskii M., Wen Ch.-F., Zvereva M., “Oscillations of the String With Singuliarities”, J. Nonlinear Convex Anal., 20:8, SI (2019), 1525–1545