Loading [MathJax]/jax/output/CommonHTML/jax.js
Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2024, Volume 64, Number 6, Pages 973–991
DOI: https://doi.org/10.31857/S0044466924060075
(Mi zvmmf11769)
 

Ordinary differential equations

On the approximation of the first eigenvalue of some boundary value problems

M. Yu. Vatolkin

Kalashnikov Izhevsk State Technical University, 426069, Izhevsk, Russia
Abstract: A two-point (n1,1)-type boundary value problem is investigated for the representation of eigenfunctions in the form of scalar series under the assumption that there is a functional ˜l, concentrated at one point, such that the first n1 original boundary conditions and ˜lx=1 turn into Cauchy conditions at this point. The eigenfunction of the boundary value problem under consideration, corresponding to the eigenvalue λ, is presented by an expansion in powers of λ. The equation Φ(λ)=0, where Φ(λ) is the sum of the power series in λ, for finding the eigenvalues of the original problem is considered. Examples of calculating the first eigenvalue of some boundary value problems are given. Various estimates for the coefficients of such power series are obtained. A function of two variables t and λ is determined, and a partial differential equation with conditions for this function are obtained. The zeros of the “section” of this function coincide with the eigenvalues of the original boundary value problem, which can be used for their approximate calculation.
Key words: boundary eigenvalue problems, eigenfunctions, eigenvalues, Cauchy function, representation of eigenfunctions by power series, roots of equations, estimates for coefficients of power series.
Received: 18.12.2023
Accepted: 05.03.2024
English version:
Computational Mathematics and Mathematical Physics, 2024, Volume 64, Issue 6, Pages 1224–1239
DOI: https://doi.org/10.1134/S0965542524700465
Bibliographic databases:
Document Type: Article
UDC: 517.925.54
Language: Russian
Citation: M. Yu. Vatolkin, “On the approximation of the first eigenvalue of some boundary value problems”, Zh. Vychisl. Mat. Mat. Fiz., 64:6 (2024), 973–991; Comput. Math. Math. Phys., 64:6 (2024), 1224–1239
Citation in format AMSBIB
\Bibitem{Vat24}
\by M.~Yu.~Vatolkin
\paper On the approximation of the first eigenvalue of some boundary value problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2024
\vol 64
\issue 6
\pages 973--991
\mathnet{http://mi.mathnet.ru/zvmmf11769}
\crossref{https://doi.org/10.31857/S0044466924060075}
\elib{https://elibrary.ru/item.asp?id=75171316}
\transl
\jour Comput. Math. Math. Phys.
\yr 2024
\vol 64
\issue 6
\pages 1224--1239
\crossref{https://doi.org/10.1134/S0965542524700465}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11769
  • https://www.mathnet.ru/eng/zvmmf/v64/i6/p973
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025