Processing math: 100%
Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2008, Volume 63, Issue 1, Pages 35–107
DOI: https://doi.org/10.1070/RM2008v063n01ABEH004501
(Mi rm8545)
 

This article is cited in 53 scientific papers (total in 53 papers)

Korn inequalities for elastic junctions of massive bodies, thin plates, and rods

S. A. Nazarov

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences
References:
Abstract: Korn inequalities have been obtained for junctions of massive elastic bodies, thin plates, and rods in many different combinations. These inequalities are asymptotically sharp thanks to the introduction of various weight factors in the L2-norms of the displacements and their derivatives. Since thin bodies display different reactions to stretching and bending, such Korn inequalities are necessarily anisotropic. Junctions of elastic bodies with contrasting stiffness are allowed, but the constants in the inequalities obtained are independent of both the relative thickness h(0,1] and the relative rigidity μ(0,+). The norms corresponding to rigidly clamped elements of a structure are essentially different from the norms corresponding to hard-movable or movable elements that are not fastened directly, but only by means of neighbouring elements; therefore, an adequate structure of the weighted anisotropic norms is determined by the geometry of the whole junction. Each variant of Korn inequality is supplied with an example confirming the optimal choice of the weight factors.
Received: 15.10.2007
Bibliographic databases:
Document Type: Article
UDC: 517.946
MSC: Primary 74K30; Secondary 35B45, 35Q72, 74B05, 74E10, 74K10, 74K20
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Korn inequalities for elastic junctions of massive bodies, thin plates, and rods”, Russian Math. Surveys, 63:1 (2008), 35–107
Citation in format AMSBIB
\Bibitem{Naz08}
\by S.~A.~Nazarov
\paper Korn inequalities for elastic junctions of massive bodies, thin plates, and rods
\jour Russian Math. Surveys
\yr 2008
\vol 63
\issue 1
\pages 35--107
\mathnet{http://mi.mathnet.ru/eng/rm8545}
\crossref{https://doi.org/10.1070/RM2008v063n01ABEH004501}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2406182}
\zmath{https://zbmath.org/?q=an:1155.74027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257244100002}
\elib{https://elibrary.ru/item.asp?id=12894560}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48249095600}
Linking options:
  • https://www.mathnet.ru/eng/rm8545
  • https://doi.org/10.1070/RM2008v063n01ABEH004501
  • https://www.mathnet.ru/eng/rm/v63/i1/p37
  • This publication is cited in the following 53 articles:
    1. A. M. Budylin, S. B. Levin, T. S. Yurova, “Asymptotics of the solution of the Dirichlet problem for the Laplace equation in a strip with thin branches”, Math. Notes, 116:3 (2024), 432–445  mathnet  crossref  crossref
    2. S. A. Nazarov, “Influence of Winkler–Steklov conditions on natural oscillations of elastic weighty body”, Ufa Math. J., 16:1 (2024), 53–79  mathnet  crossref
    3. S. A. Nazarov, “‘Far interaction’ of small spectral perturbations of the Neumann boundary conditions for an elliptic system of differential equations in a three-dimensional domain”, Sb. Math., 214:1 (2023), 58–107  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. S. A. Nazarov, “Asimptotika sobstvennykh chisel zadachi teorii uprugosti so spektralnymi usloviyami Vinklera–Steklova na malykh uchastkakh granitsy”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 50, Zap. nauchn. sem. POMI, 519, POMI, SPb., 2022, 152–187  mathnet
    5. S. A. Nazarov, “Abnormal Transmission of Elastic Waves through a Thin Ligament Connecting Two Planar Isotropic Waveguides”, Mech. Solids, 57:8 (2022), 1908  crossref
    6. Yao P.-F., “Optimal Exponentials of Thickness in Korn'S Inequalities For Parabolic and Elliptic Shells”, Ann. Mat. Pura Appl., 200:2 (2021), 379–401  crossref  mathscinet  isi  scopus
    7. Yao P.-F., “Strain Tensors on Hyperbolic Surfaces and Their Applications”, J. Funct. Anal., 281:1 (2021), 108986  crossref  mathscinet  isi  scopus
    8. Leugering G., Nazarov S.A., Slutskij A.S., Taskinen J., “Asymptotic Analysis of a BIT Brace Shaped Junction of Thin Rods”, ZAMM-Z. Angew. Math. Mech., 100:1 (2020), UNSP e201900227  crossref  mathscinet  isi
    9. S. A. Nazarov, “Almost Complete Transmission of Low Frequency Waves in a Locally Damaged Elastic Waveguide”, J Math Sci, 244:3 (2020), 451  crossref
    10. Leugering G., Nazarov S.A., Slutskij A.S., “The Asymptotic Analysis of a Junction of Two Elastic Beams”, ZAMM-Z. Angew. Math. Mech., 99:1 (2019), UNSP e201700192  crossref  mathscinet  isi  scopus
    11. Harutyunyan D. Mikayelyan H., “Weighted Asymptotic Korn and Interpolation Korn Inequalities With Singular Weights”, Proc. Amer. Math. Soc., 147:8 (2019), 3635–3647  crossref  mathscinet  isi  scopus
    12. S. A. Nazarov, “Waves in a Plane Rectangular Lattice of Thin Elastic Waveguides”, J Math Sci, 242:2 (2019), 227  crossref
    13. S. A. Nazarov, A. S. Slutskii, “The Elastic Polarization Matrix for a Junction of Isotropic Half-Strips”, J Math Sci, 239:3 (2019), 349  crossref
    14. Grabovsky Yu., Harutyunyan D., “Korn Inequalities For Shells With Zero Gaussian Curvature”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 35:1 (2018), 267–282  crossref  mathscinet  zmath  isi  scopus
    15. Kozlov V.A. Nazarov S.A., “Waves and Radiation Conditions in a Cuspidal Sharpening of Elastic Bodies”, J. Elast., 132:1 (2018), 103–140  crossref  mathscinet  zmath  isi  scopus
    16. Nazarov S.A., Slutskii A.S., “Asymptotics of Natural Oscillations of Elastic Junctions With Readily Movable Elements”, Mech. Sol., 53:1 (2018), 101–115  crossref  mathscinet  isi  scopus
    17. Harutyunyan D., “Sharp Weighted Korn and Korn-Like Inequalities and an Application to Washers”, J. Elast., 127:1 (2017), 59–77  crossref  mathscinet  zmath  isi  scopus
    18. Nazarov S.A., Slutskij A.S., “A Folded Plate Clamped Along One Side Only”, C. R. Mec., 345:12 (2017), 903–907  crossref  isi  scopus
    19. G. Leugering, S. A. Nazarov, A. S. Slutskii, “Korn Inequality for a Thin Periodic Corrugated Beam”, J Math Sci, 226:4 (2017), 375  crossref
    20. Lazarev N.P., Itou H., Neustroeva N.V., “Fictitious Domain Method For An Equilibrium Problem of the Timoshenko-Type Plate With a Crack Crossing the External Boundary At Zero Angle”, 33, no. 1, 2016, 63–80  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1140
    Russian version PDF:486
    English version PDF:39
    References:116
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025