Loading [MathJax]/jax/output/SVG/config.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2012, Volume 17, Issue 6, Pages 547–558
DOI: https://doi.org/10.1134/S1560354712060068
(Mi rcd267)
 

This article is cited in 21 scientific papers (total in 21 papers)

Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid

Sergey M. Ramodanova, Valentin A. Tenenevb, Dmitry V. Treschevcd

a Institute of Computer Research, Udmurt State University, 426034, Russia, Izhevsk, Universitetskaya str., 1
b Izhevsk State Technical University, Studencheskaya 7, Izhevsk, 426069 Russia
c Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina st. 8, Moscow, 119991, Russia
d M. V. Lomonosov Moscow State University, Vorob’evy gory, Moscow, 119899, Russia
Citations (21)
Abstract: We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.
Keywords: perfect fluid, self-propulsion, Flettner rotor.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 11.G34.31.0039
NSh-2519.2012.1
This research was done at the Udmurt State University and was supported by the Grant Program of the Government of the Russian Federation for state support of scientific research conducted under the supervision of leading scientists at Russian institutions of higher professional education (Contract No11.G34.31.0039). The work of the first and the third authors was supported by the Support grant of leading scientific schools NSh-2519.2012.1.
Received: 01.09.2011
Accepted: 24.09.2011
Bibliographic databases:
Document Type: Article
MSC: 70Hxx, 70G65
Language: English
Citation: Sergey M. Ramodanov, Valentin A. Tenenev, Dmitry V. Treschev, “Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid”, Regul. Chaotic Dyn., 17:6 (2012), 547–558
Citation in format AMSBIB
\Bibitem{RamTenTre12}
\by Sergey M. Ramodanov, Valentin A. Tenenev, Dmitry V. Treschev
\paper Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid
\jour Regul. Chaotic Dyn.
\yr 2012
\vol 17
\issue 6
\pages 547--558
\mathnet{http://mi.mathnet.ru/rcd267}
\crossref{https://doi.org/10.1134/S1560354712060068}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3001100}
\zmath{https://zbmath.org/?q=an:06148383}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012RCD....17..547R}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312216300006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876081373}
Linking options:
  • https://www.mathnet.ru/eng/rcd267
  • https://www.mathnet.ru/eng/rcd/v17/i6/p547
  • This publication is cited in the following 21 articles:
    1. Alexander A. Kilin, Anna M. Gavrilova, Elizaveta M. Artemova, “Dynamics of an Elliptic Foil with an Attached Vortex in an Ideal Fluid: The Integrable Case”, Regul. Chaot. Dyn., 2024  crossref
    2. Y. Qin, Z. Y. Zhang, W. H. Sha, R. Sun, “Self-propulsion of a submerged sphere due to coupling of its deformation and internal mass shift”, Physics of Fluids, 34:4 (2022)  crossref
    3. Yury L. Karavaev, Anton V. Klekovkin, Ivan S. Mamaev, Valentin A. Tenenev, Evgeny V. Vetchanin, “A Simple Physical Model for Control of a Propellerless Aquatic Robot”, Journal of Mechanisms and Robotics, 14:1 (2022)  crossref
    4. Mamaev I.S. Bizyaev I.A., “Dynamics of An Unbalanced Circular Foil and Point Vortices in An Ideal Fluid”, Phys. Fluids, 33:8 (2021), 087119  crossref  mathscinet  isi  scopus
    5. Li B., Zhang R., Zhang B., Yang Q., Guo Ch., “An Assisted Propulsion Device of Vessel Utilizing Wind Energy Based on Magnus Effect”, Appl. Ocean Res., 114 (2021), 102788  crossref  isi  scopus
    6. E. M. Artemova, E. V. Vetchanin, “Control of the motion of a circular cylinder in an ideal fluid using a source”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:4 (2020), 604–617  mathnet  crossref
    7. E. V. Vetchanin, “The Motion of a Balanced Circular Cylinder in an Ideal Fluid Under the Action of External Periodic Force and Torque”, Rus. J. Nonlin. Dyn., 15:1 (2019), 41–57  mathnet  crossref  elib
    8. Alexey V. Borisov, Ivan S. Mamaev, Eugeny V. Vetchanin, “Dynamics of a Smooth Profile in a Medium with Friction in the Presence of Parametric Excitation”, Regul. Chaotic Dyn., 23:4 (2018), 480–502  mathnet  crossref  mathscinet
    9. A. A. Kilin, A. I. Klenov, V. A. Tenenev, “Upravlenie dvizheniem tela s pomoschyu vnutrennikh mass v vyazkoi zhidkosti”, Kompyuternye issledovaniya i modelirovanie, 10:4 (2018), 445–460  mathnet  crossref
    10. Ivan S. Mamaev, Evgeny V. Vetchanin, “The Self-propulsion of a Foil with a Sharp Edge in a Viscous Fluid Under the Action of a Periodically Oscillating Rotor”, Regul. Chaotic Dyn., 23:7-8 (2018), 875–886  mathnet  crossref  mathscinet
    11. I. S. Mamaev, V. A. Tenenev, E. V. Vetchanin, “Dynamics of a Body with a Sharp Edge in a Viscous Fluid”, Nelin. Dinam., 14:4 (2018), 473–494  mathnet  crossref  elib
    12. A. N. Nuriev, A. I. Yunusova, O. N. Zaitseva, “Modelirovanie peremescheniya klinovidnogo vibrorobota v vyazkoi zhidkosti pri razlichnykh zakonakh dvizheniya vnutrennei massy v pakete OpenFOAM”, Trudy ISP RAN, 29:1 (2017), 101–118  mathnet  crossref  elib
    13. Vetchanin E.V. Kilin A.A., “Control of Body Motion in An Ideal Fluid Using the Internal Mass and the Rotor in the Presence of Circulation Around the Body”, J. Dyn. Control Syst., 23:2 (2017), 435–458  crossref  mathscinet  zmath  isi  scopus
    14. Yury L. Karavaev, Alexander A. Kilin, Anton V. Klekovkin, “Experimental Investigations of the Controlled Motion of a Screwless Underwater Robot”, Regul. Chaotic Dyn., 21:7-8 (2016), 918–926  mathnet  crossref
    15. Anatolii I. Klenov, Alexander A. Kilin, “Influence of Vortex Structures on the Controlled Motion of an Above-water Screwless Robot”, Regul. Chaotic Dyn., 21:7-8 (2016), 927–938  mathnet  crossref
    16. Borisov A.V. Kuznetsov S.P. Mamaev I.S. Tenenev V.A., “Describing the Motion of a Body With An Elliptical Cross Section in a Viscous Uncompressible Fluid By Model Equations Reconstructed From Data Processing”, Tech. Phys. Lett., 42:9 (2016), 886–890  crossref  isi  scopus
    17. Vetchanin E.V. Kilin A.A., “Free and Controlled Motion of a Body With a Moving Internal Mass Through a Fluid in the Presence of Circulation Around the Body”, Dokl. Phys., 61:1 (2016), 32–36  mathnet  crossref  mathscinet  isi  scopus
    18. Nuriev A.N., Zakharova O.S., Zaitseva O.N., Yunusova A.I., “The Study of the Wedge-Shaped Vibration-Driven Robot Motion in a Viscous Fluid Forced By Different Oscillation Laws of the Internal Mass”, 11Th International Conference on Mesh Methods For Boundry-Value Problems and Applications, IOP Conference Series-Materials Science and Engineering, 158, IOP Publishing Ltd, 2016, UNSP 012072  crossref  isi  scopus
    19. A. A. Kilin, E. V. Vetchanin, “Upravlenie dvizheniem tverdogo tela v zhidkosti s pomoschyu dvukh podvizhnykh mass”, Nelineinaya dinam., 11:4 (2015), 633–645  mathnet
    20. Vladimir Dragović, Borislav Gajić, “Four-Dimensional Generalization of the Grioli Precession”, Regul. Chaotic Dyn., 19:6 (2014), 656–662  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:252
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025