Loading [MathJax]/jax/output/SVG/config.js
Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2010, Volume 6, Number 4, Pages 769–805 (Mi nd5)  

This article is cited in 17 scientific papers (total in 17 papers)

Topological analysis and Boolean functions. I. Methods and application to classical systems

M. P. Kharlamov

Volgograd Academy of Public Administration
References:
Abstract: We aim to completely formalize the rough topological analysis of integrable Hamiltonian systems admitting analytical solutions such that the initial phase variables along with the time derivatives of the auxiliary variables are expressed as rational functions (in fact, as polynomials) in some set of radicals depending on one variable each. We suggest a method to define the admissible regions in the integral constants space, the segments of oscillation of the separated variables and the number of connected components of integral manifolds and critical integral surfaces. This method is based on some algorithms of processing the tables of some Boolean vector-functions and of reducing the matrices of linear Boolean vector-functions to some canonical form. From this point of view we consider here the topologically richest classical problems of the rigid body dynamics. The article will be continued with the investigation of some new integrable problems.
Keywords: algebraic separation of variables, integral manifolds, Boolean functions, topological analysis, algorithms.
Received: 27.05.2010
Document Type: Article
UDC: 517.938.5:531.38+519.6
MSC: 70E17, 70G40
Language: Russian
Citation: M. P. Kharlamov, “Topological analysis and Boolean functions. I. Methods and application to classical systems”, Nelin. Dinam., 6:4 (2010), 769–805
Citation in format AMSBIB
\Bibitem{Kha10}
\by M.~P.~Kharlamov
\paper Topological analysis and Boolean functions. I.~Methods and application to classical systems
\jour Nelin. Dinam.
\yr 2010
\vol 6
\issue 4
\pages 769--805
\mathnet{http://mi.mathnet.ru/nd5}
Linking options:
  • https://www.mathnet.ru/eng/nd5
  • https://www.mathnet.ru/eng/nd/v6/i4/p769
    Cycle of papers
    This publication is cited in the following 17 articles:
    1. S. E. Pustovoitov, “Issledovanie struktury sloeniya Liuvillya integriruemogo ellipticheskogo billiarda s polinomialnym potentsialom”, Chebyshevskii sb., 25:1 (2024), 62–102  mathnet  crossref
    2. V. A. Kibkalo, “Pervyi klass Appelrota psevdoevklidovoi sistemy Kovalevskoi”, Chebyshevskii sb., 24:1 (2023), 69–88  mathnet  crossref
    3. V. V. Vedyushkina, A. I. Skvortsov, “Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential”, Moscow University Mathematics Bulletin, 77:1 (2022), 7–19  mathnet  crossref  mathscinet  zmath
    4. S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Sb. Math., 212:2 (2021), 211–233  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. I. F. Kobtsev, “An elliptic billiard in a potential force field: classification of motions, topological analysis”, Sb. Math., 211:7 (2020), 987–1013  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. V. D. Irtegov, T. N. Titorenko, “On invariant sets for the equations of motion of a rigid body in the Hess–Appelrot case”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 33 (2020), 20–34  mathnet  crossref
    7. S. E. Pustovoytov, “Topological analysis of a billiard in elliptic ring in a potential field”, J. Math. Sci., 259:5 (2021), 712–729  mathnet  crossref
    8. I. F. Kobtsev, “The geodesic flow on a two-dimensional ellipsoid in the field of an elastic force. Topological classification of solutions”, Moscow University Mathematics Bulletin, 73:2 (2018), 64–70  mathnet  crossref  mathscinet  zmath  isi
    9. Nikolaenko S.S., “Topological Classification of the Goryachev Integrable Systems in the Rigid Body Dynamics: Non-Compact Case”, Lobachevskii J. Math., 38:6 (2017), 1050–1060  crossref  mathscinet  zmath  isi  scopus
    10. S. S. Nikolaenko, “Topological classification of the Goryachev integrable case in rigid body dynamics”, Sb. Math., 207:1 (2016), 113–139  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65  mathnet  crossref  mathscinet  zmath
    12. S. S. Nikolaenko, “A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid”, Sb. Math., 205:2 (2014), 224–268  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. P. E. Ryabov, “The phase topology of a special case of Goryachev integrability in rigid body dynamics”, Sb. Math., 205:7 (2014), 1024–1044  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. S. S. Nikolaenko, “The number of connected components in the preimage of a regular value of the momentum mapping for the geodesic flow on ellipsoid”, Moscow University Mathematics Bulletin, 68:5 (2013), 241–245  mathnet  crossref  mathscinet
    15. M. P. Kharlamov, “Topologicheskii analiz i bulevy funktsii: II. Prilozheniya k novym algebraicheskim resheniyam”, Nelineinaya dinam., 7:1 (2011), 25–51  mathnet
    16. Ryabov P.E., “Explicit integration and topology of D. N. Goryachev case”, Dokl. Math., 84:1 (2011), 502–505  crossref  mathscinet  zmath  isi  elib  elib  scopus
    17. Kharlamov M.P., Savushkin A.Yu., “Geometricheskii podkhod k razdeleniyu peremennykh v mekhanicheskikh sistemakh”, Vestn. Volgogradskogo gos. un-ta. Ser. 1: Matem. Fiz., 2010, no. 13, 47–74  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:489
    Full-text PDF :192
    References:70
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025