Abstract:
We investigate the phase topology of the integrable Hamiltonian system on e(3) found by V. V. Sokolov (2001) and generalizing the Kowalevski case. This generalization contains, along with a homogeneous potential force field, gyroscopic forces depending on the configurational variables. The relative equilibria are classified, their type is calculated and the character of stability is defined. The Smale diagrams of the case are found and the isoenergy manifolds of the reduced systems with two degrees of freedom are classified. The set of critical points of the momentum map is represented as a union of critical subsystems; each critical subsystem is a one-parameter family of almost Hamiltonian systems with one degree of freedom. For all critical points we explicitly calculate the characteristic values defining their type. We obtain the equations of the diagram of the momentum map and give a classification of isoenergy and isomomentum diagrams equipped with the description of regular integral manifolds and their bifurcations. We construct the Smale–Fomenko diagrams which, when considered in the enhanced space of the energy-momentum constants and the essential physical parameters, separate 25 different types of topological invariants called the Fomenko graphs. We find all marked loop molecules of rank 0 nondegenerate critical points and of rank 1 degenerate periodic trajectories. Analyzing the cross-sections of the isointegral equipped diagrams, we get a complete list of the Fomenko graphs. The marks on them producing the exact topological invariants of Fomenko–Zieschang can be found from previous investigations of two partial cases with some additions obtained from the loop molecules or by a straightforward calculation using the separation of variables.
This work was partially supported by RFBR and the authorities of the Volgograd Region, research projects No. 14-01-00119, 15-41-02049, and 16-01-00170.
Citation:
Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65
\Bibitem{KhaRyaSav16}
\by Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin
\paper Topological Atlas of the Kowalevski–Sokolov Top
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 1
\pages 24--65
\mathnet{http://mi.mathnet.ru/rcd66}
\crossref{https://doi.org/10.1134/S1560354716010032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3457075}
\zmath{https://zbmath.org/?q=an:06580141}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373028300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957556146}
Linking options:
https://www.mathnet.ru/eng/rcd66
https://www.mathnet.ru/eng/rcd/v21/i1/p24
This publication is cited in the following 11 articles:
A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954
Pavel E. Ryabov, Sergei V. Sokolov, “Bifurcation Diagram of the Model of a Lagrange Top with a Vibrating Suspension Point”, Mathematics, 11:3 (2023), 533
Anatoly T. Fomenko, Vladislav A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, European Journal of Mathematics, 8:4 (2022), 1392
Vladimir Dragović, Fariba Khoshnasib-Zeinabad, “Topology of the isoenergy manifolds of the Kirchhoff rigid body case on e(3)”, Topology and its Applications, 311 (2022), 107955
Anatoly T. Fomenko, Vladislav A. Kibkalo, Understanding Complex Systems, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, 2021, 3
V. A. Kibkalo, “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 75:6 (2020), 263–267
V. Kibkalo, “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra so(3,1)”, Topology Appl., 275 (2020), 107028
Pavel E. Ryabov, 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference) (STAB), 2020, 1
W Chatar, M Benkhali, I El Fakkousy, J Kharbach, A Rezzouk, M Ouazzani-Jamil, “The phase topology and bifurcation tori of the Hydrogen atom subjected to external fields”, J. Phys.: Conf. Ser., 1292:1 (2019), 012007
W Chatar, M Benkhali, I El Fakkousy, J Kharbach, A Rezzouk, M Ouazzani-Jamil, “Classical mechanics of the Hydrogen atom perturbed by Van der Waals potential interacting with combined electric and magnetic fields”, J. Phys.: Conf. Ser., 1292:1 (2019), 012008
Jaouad Kharbach, Mohamed Benkhali, Mohamed Benmalek, Ahmed Sali, Abdellah Rezzouk, Mohammed Ouazzani-Jamil, “The Study on the Phase Structure of the Paul Trap System”, AM, 08:04 (2017), 525