Abstract:
It is shown that Liouville foliations of the family on non-Euclidean analogs of Kovalevskaya integrable system on a pencil of Lie algebras have both compact and noncompact fibers. A bifurcation of their compact common level surface into a noncompact one exists and has a noncompact singular fiber. In particular, this is true for the non-Euclidean e(2,1)e(2,1)-analogue of the Kovalevskaya case of rigid body dynamics. For the case of nonzero area integral, we prove an effective criterion of existence of a noncompact component of the common level surface of first integrals and Casimir functions.
Citation:
V. A. Kibkalo, “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 6, 56–59; Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 75:6 (2020), 263–267
\Bibitem{Kib20}
\by V.~A.~Kibkalo
\paper Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2020
\issue 6
\pages 56--59
\mathnet{http://mi.mathnet.ru/vmumm4367}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4243099}
\zmath{https://zbmath.org/?q=an:07352011}
\transl
\jour Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin
\yr 2020
\vol 75
\issue 6
\pages 263--267
\crossref{https://doi.org/10.3103/S0027132220060054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000632417100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100130520}
Linking options:
https://www.mathnet.ru/eng/vmumm4367
https://www.mathnet.ru/eng/vmumm/y2020/i6/p56
This publication is cited in the following 10 articles:
G. P. Palshin, “Topology of the Liouville foliation in the generalized constrained three-vortex problem”, Sb. Math., 215:5 (2024), 667–702
E. S. Agureeva, V. A. Kibkalo, “Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra $e(2,1)$”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 79:5 (2024), 207–222
G. P. Palshin, “Topology of the Generalized Constrained Three-Vortex Problem at Zero Total Vortical Moment”, Lobachevskii J Math, 45:10 (2024), 5191
A. T. Fomenko, A. I. Shafarevich, V. A. Kibkalo, “Glavnye napravleniya i dostizheniya kafedry differentsialnoi geometrii i prilozhenii na sovremennom etape”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2024, no. 6, 27–37
A. T. Fomenko, A. I. Shafarevich, V. A. Kibkalo, “Main recent directions and achievments of the Chair of Differential Geometry and Applications”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 79:6 (2024), 283–295
M. K. Altuev, V. A. Kibkalo, “Topological analysis of pseudo-Euclidean Euler top for special values of the parameters”, Sb. Math., 214:3 (2023), 334–348
A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954
A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979
S. S. Nikolaenko, “Topologicheskaya klassifikatsiya nekompaktnykh 3-atomov s deistviem okruzhnosti”, Chebyshevskii sb., 22:5 (2021), 185–197
A. T. Fomenko, V. V. Vedyushkina, “Billiards with Changing Geometry and Their Connection with the Implementation of the Zhukovsky and Kovalevskaya Cases”, Russ. J. Math. Phys., 28:3 (2021), 317