Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2020, Number 6, Pages 56–59 (Mi vmumm4367)  

This article is cited in 10 scientific papers (total in 10 papers)

Short notes

Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras

V. A. Kibkaloab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: It is shown that Liouville foliations of the family on non-Euclidean analogs of Kovalevskaya integrable system on a pencil of Lie algebras have both compact and noncompact fibers. A bifurcation of their compact common level surface into a noncompact one exists and has a noncompact singular fiber. In particular, this is true for the non-Euclidean e(2,1)e(2,1)-analogue of the Kovalevskaya case of rigid body dynamics. For the case of nonzero area integral, we prove an effective criterion of existence of a noncompact component of the common level surface of first integrals and Casimir functions.
Key words: Hamiltonian system, integrability, rigid body, Lie algebra, Liouville foliation, compactness.
Received: 27.02.2020
English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2020, Volume 75, Issue 6, Pages 263–267
DOI: https://doi.org/10.3103/S0027132220060054
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
Language: Russian
Citation: V. A. Kibkalo, “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2020, no. 6, 56–59; Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 75:6 (2020), 263–267
Citation in format AMSBIB
\Bibitem{Kib20}
\by V.~A.~Kibkalo
\paper Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2020
\issue 6
\pages 56--59
\mathnet{http://mi.mathnet.ru/vmumm4367}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4243099}
\zmath{https://zbmath.org/?q=an:07352011}
\transl
\jour Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin
\yr 2020
\vol 75
\issue 6
\pages 263--267
\crossref{https://doi.org/10.3103/S0027132220060054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000632417100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85100130520}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4367
  • https://www.mathnet.ru/eng/vmumm/y2020/i6/p56
  • This publication is cited in the following 10 articles:
    1. G. P. Palshin, “Topology of the Liouville foliation in the generalized constrained three-vortex problem”, Sb. Math., 215:5 (2024), 667–702  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. E. S. Agureeva, V. A. Kibkalo, “Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra $e(2,1)$”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 79:5 (2024), 207–222  mathnet  mathnet  crossref  crossref
    3. G. P. Palshin, “Topology of the Generalized Constrained Three-Vortex Problem at Zero Total Vortical Moment”, Lobachevskii J Math, 45:10 (2024), 5191  crossref
    4. A. T. Fomenko, A. I. Shafarevich, V. A. Kibkalo, “Glavnye napravleniya i dostizheniya kafedry differentsialnoi geometrii i prilozhenii na sovremennom etape”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2024, no. 6, 27–37  mathnet  crossref  elib
    5. A. T. Fomenko, A. I. Shafarevich, V. A. Kibkalo, “Main recent directions and achievments of the Chair of Differential Geometry and Applications”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 79:6 (2024), 283–295  mathnet  mathnet  crossref  crossref
    6. M. K. Altuev, V. A. Kibkalo, “Topological analysis of pseudo-Euclidean Euler top for special values of the parameters”, Sb. Math., 214:3 (2023), 334–348  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. S. S. Nikolaenko, “Topologicheskaya klassifikatsiya nekompaktnykh 3-atomov s deistviem okruzhnosti”, Chebyshevskii sb., 22:5 (2021), 185–197  mathnet  crossref
    10. A. T. Fomenko, V. V. Vedyushkina, “Billiards with Changing Geometry and Their Connection with the Implementation of the Zhukovsky and Kovalevskaya Cases”, Russ. J. Math. Phys., 28:3 (2021), 317  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :41
    References:37
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025