Loading [MathJax]/jax/output/CommonHTML/jax.js
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2024, Number 5, Pages 3–16
DOI: https://doi.org/10.55959/MSU0579-9368-1-65-5-1
(Mi vmumm4625)
 

Mathematics

Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra e(2,1)

E. S. Agureevaa, V. A. Kibkaloab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: We study an axisymmetric analog of the Zhukovsky integrable case for the Lie algebra e(2,1). Bifurcation diagrams are constructed. They essentially depend both on the constant parameters of the system and on the values of the Casimir functions, which are analogues of the geometric integral and the area integral. The critical set of the system is studied, and the nondegeneracy of its points is checked. Analogues of the Fomenko 3-atoms of the system are determined and it is shown that all of them have the type of direct product of the 2-dimensional base and the 1-dimensional fiber. Non-compact non-critical bifurcations are discovered in the system.
Key words: integrable system, rigid body dynamics, Liouville foliation, pseudo-Euclidean space, Zhukovsky case, topological invariant, singularity.
Received: 28.04.2023
English version:
Moscow University Mathematics Bulletin, 2024, Volume 79, Issue 5, Pages 207–222
DOI: https://doi.org/10.3103/S0027132224700281
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
Language: Russian
Citation: E. S. Agureeva, V. A. Kibkalo, “Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra e(2,1)”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 5, 3–16; Moscow University Mathematics Bulletin, 79:5 (2024), 207–222
Citation in format AMSBIB
\Bibitem{AguKib24}
\by E.~S.~Agureeva, V.~A.~Kibkalo
\paper Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra $e(2,1)$
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2024
\issue 5
\pages 3--16
\mathnet{http://mi.mathnet.ru/vmumm4625}
\crossref{https://doi.org/10.55959/MSU0579-9368-1-65-5-1}
\elib{https://elibrary.ru/item.asp?id=72751198}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2024
\vol 79
\issue 5
\pages 207--222
\crossref{https://doi.org/10.3103/S0027132224700281}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4625
  • https://www.mathnet.ru/eng/vmumm/y2024/i5/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:71
    Full-text PDF :20
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025