Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 7, Pages 987–1013
DOI: https://doi.org/10.1070/SM9296
(Mi sm9296)
 

This article is cited in 13 scientific papers (total in 13 papers)

An elliptic billiard in a potential force field: classification of motions, topological analysis

I. F. Kobtsev

Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
References:
Abstract: Given an ellipse x2a+y2b=1, a>b>0, we consider an absolutely elastic billiard in it with potential k2(x2+y2)+α2x2+β2y2, a0, β0. This dynamical system is integrable and has two degrees of freedom. We obtain the iso-energy invariants of rough and fine Liouville equivalence, and conduct a comparative analysis of other systems known in rigid body mechanics. To obtain the results we apply the method of separation of variables and construct a new method, which is equivalent to the bifurcation diagram but does not require it to be constructed.
Bibliography: 17 titles.
Keywords: integrable Hamiltonian system, billiard in an ellipse, potential, Liouville foliation, bifurcations.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-6399.2018.1
This research was conducted in the framework of the Programme of the President of the Russian Federation for State Support of Leading Scientific Schools (grant no. НШ-6399.2018.1).
Received: 28.06.2019
Bibliographic databases:
Document Type: Article
UDC: 517.938.5
MSC: Primary 37J35; Secondary 37G10, 70H06, 70E40
Language: English
Original paper language: Russian
Citation: I. F. Kobtsev, “An elliptic billiard in a potential force field: classification of motions, topological analysis”, Sb. Math., 211:7 (2020), 987–1013
Citation in format AMSBIB
\Bibitem{Kob20}
\by I.~F.~Kobtsev
\paper An elliptic billiard in a~potential force field: classification of motions, topological analysis
\jour Sb. Math.
\yr 2020
\vol 211
\issue 7
\pages 987--1013
\mathnet{http://mi.mathnet.ru/eng/sm9296}
\crossref{https://doi.org/10.1070/SM9296}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133436}
\zmath{https://zbmath.org/?q=an:1448.37066}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..987K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000573484500001}
\elib{https://elibrary.ru/item.asp?id=45280154}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092096416}
Linking options:
  • https://www.mathnet.ru/eng/sm9296
  • https://doi.org/10.1070/SM9296
  • https://www.mathnet.ru/eng/sm/v211/i7/p93
  • This publication is cited in the following 13 articles:
    1. Vivina L Barutello, Anna Maria Cherubini, Irene De Blasi, “Exploration of billiards with Keplerian potential”, Nonlinearity, 38:5 (2025), 055004  crossref
    2. Airi Takeuchi, Lei Zhao, “Conformal transformations and integrable mechanical billiards”, Advances in Mathematics, 436 (2024), 109411  crossref  mathscinet
    3. S. E. Pustovoitov, “Issledovanie struktury sloeniya Liuvillya integriruemogo ellipticheskogo billiarda s polinomialnym potentsialom”, Chebyshevskii sb., 25:1 (2024), 62–102  mathnet  crossref
    4. A. T. Fomenko, V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. S. E. Pustovoitov, “Classification of singularities of the Liouville foliation of an integrable elliptical billiard with a potential of fourth degree”, Russ. J. Math. Phys., 30:4 (2023), 643  crossref  mathscinet
    6. G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. A. T. Fomenko, V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. G. V. Belozerov, “Topology of $5$-surfaces of a 3D billiard inside a triaxial ellipsoid with Hooke's potential”, Moscow University Mathematics Bulletin, 77:6 (2022), 277–289  mathnet  crossref  crossref  mathscinet  zmath  elib
    9. S. E. Pustovoitov, “Topological Analysis of An Elliptic Billiard in a Fourth-Order Potential Field”, Mosc. Univ. Math. Bull., 76:5 (2021), 193–205  mathnet  crossref  mathscinet  isi  scopus
    10. V. V. Vedyushkina, A. T. Fomenko, “Force evolutionary billiards and billiard equivalence of the Euler and Lagrange cases”, Dokl. Math., 103:1 (2021), 1–4  mathnet  crossref  crossref  zmath  elib
    11. V. A. Kibkalo, A. T. Fomenko, I. S. Kharcheva, “Realizing integrable Hamiltonian systems by means of billiard books”, Trans. Moscow Math. Soc., 82 (2021), 37–64  mathnet  crossref
    12. S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Sb. Math., 212:2 (2021), 211  crossref  mathscinet
    13. Anatoly T. Fomenko, Vladislav A. Kibkalo, Understanding Complex Systems, Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, 2021, 3  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:436
    Russian version PDF:86
    English version PDF:42
    References:53
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025