Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2013, Volume 9, Number 4, Pages 627–640 (Mi nd410)  

This article is cited in 3 scientific papers (total in 3 papers)

Geometrization of the Chaplygin reducing-multiplier theorem

A. V. Bolsinovab, A. V. Borisovcad, I. S. Mamaevacd

a Laboratory of nonlinear analysis and the design of new types of vehicles, Institute of Computer Science, Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
b School of Mathematics, Loughborough University, United Kingdom, LE11 3TU, Loughborough, Leicestershire
c A. A. Blagonravov Mechanical Engineering Institute of RAS, Bardina str. 4, Moscow, 117334, Russia
d Institute of Mathematics and Mechanics of the Ural Branch of RAS, S. Kovalevskaja str. 16, Ekaterinburg, 620990, Russia
Full-text PDF (298 kB) Citations (3)
References:
Abstract: This paper develops the theory of the reducing multiplier for a special class of nonholonomic dynamical systems, when the resulting nonlinear Poisson structure is reduced to the Lie–Poisson bracket of the algebra e(3). As an illustration, the Chaplygin ball rolling problem and the Veselova system are considered. In addition, an integrable gyrostatic generalization of the Veselova system is obtained.
Keywords: nonholonomic dynamical system, Poisson bracket, Poisson structure, reducing multiplier, Hamiltonization, conformally Hamiltonian system, Chaplygin ball.
Received: 19.09.2012
Revised: 22.11.2012
Document Type: Article
UDC: 531.8, 517.925
Language: Russian
Citation: A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Geometrization of the Chaplygin reducing-multiplier theorem”, Nelin. Dinam., 9:4 (2013), 627–640
Citation in format AMSBIB
\Bibitem{BolBorMam13}
\by A.~V.~Bolsinov, A.~V.~Borisov, I.~S.~Mamaev
\paper Geometrization of the Chaplygin reducing-multiplier theorem
\jour Nelin. Dinam.
\yr 2013
\vol 9
\issue 4
\pages 627--640
\mathnet{http://mi.mathnet.ru/nd410}
Linking options:
  • https://www.mathnet.ru/eng/nd410
  • https://www.mathnet.ru/eng/nd/v9/i4/p627
  • This publication is cited in the following 3 articles:
    1. I. A. Bizyaev, V. V. Kozlov, “Homogeneous systems with quadratic integrals, Lie-Poisson quasibrackets, and Kovalevskaya's method”, Sb. Math., 206:12 (2015), 1682–1706  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. A. V. Borisov, I. S. Mamaev, A. V. Tsiganov, “Non-holonomic dynamics and Poisson geometry”, Russian Math. Surveys, 69:3 (2014), 481–538  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Superintegrable Generalizations of the Kepler and Hook Problems”, Regul. Chaotic Dyn., 19:3 (2014), 415–434  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025