Processing math: 100%
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2014, Volume 19, Issue 3, Pages 415–434
DOI: https://doi.org/10.1134/S1560354714030095
(Mi rcd163)
 

This article is cited in 16 scientific papers (total in 16 papers)

Superintegrable Generalizations of the Kepler and Hook Problems

Ivan A. Bizyaeva, Alexey V. Borisovabc, Ivan S. Mamaevad

a Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
b A. A. Blagonravov Mechanical Engineering Research Institute of RAS, Bardina str. 4, Moscow, 117334, Russia
c National Research Nuclear University “MEPhI”, Kashirskoye shosse 31, Moscow, 115409, Russia
d Institute of Mathematics and Mechanics of the Ural Branch of RAS, S. Kovalevskaja str. 16, Ekaterinburg, 620990, Russia
Citations (16)
References:
Abstract: In this paper we consider superintegrable systems which are an immediate generalization of the Kepler and Hook problems, both in two-dimensional spaces — the plane R2 and the sphere S2 — and in three-dimensional spaces R3 and S3. Using the central projection and the reduction procedure proposed in [21], we show an interrelation between the superintegrable systems found previously and show new ones. In all cases the superintegrals are presented in explicit form.
Keywords: superintegrable systems, Kepler and Hook problems, isomorphism, central projection, reduction, highest degree polynomial superintegrals.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-12462-ofi_m
14-01-00395-a
The work of A.V. Borisov was done within the framework of the State assignment of the Udmurt State University “Regular and Chaotic Dynamics”. The work of I.S.Mamaev was supported by the grant of the RFBR 13-01-12462-ofi m, and the work of I.A.Bizyaev was supported by the grant of the RFBR 14-01-00395-a.
Received: 27.03.2014
Accepted: 13.05.2014
Bibliographic databases:
Document Type: Article
MSC: 70H06, 70G10, 37J35
Language: English
Citation: Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Superintegrable Generalizations of the Kepler and Hook Problems”, Regul. Chaotic Dyn., 19:3 (2014), 415–434
Citation in format AMSBIB
\Bibitem{BizBorMam14}
\by Ivan~A.~Bizyaev, Alexey~V.~Borisov, Ivan~S.~Mamaev
\paper Superintegrable Generalizations of the Kepler and Hook Problems
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 3
\pages 415--434
\mathnet{http://mi.mathnet.ru/rcd163}
\crossref{https://doi.org/10.1134/S1560354714030095}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3215697}
\zmath{https://zbmath.org/?q=an:1309.70020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000337051600009}
Linking options:
  • https://www.mathnet.ru/eng/rcd163
  • https://www.mathnet.ru/eng/rcd/v19/i3/p415
  • This publication is cited in the following 16 articles:
    1. Andrey V. Tsiganov, “Rotations and Integrability”, Regul. Chaotic Dyn., 29:6 (2024), 913–930  mathnet  crossref
    2. Cezary Gonera, Joanna Gonera, Javier de Lucas, Wioletta Szczesek, Bartosz M. Zawora, “More on Superintegrable Models on Spaces of Constant Curvature”, Regul. Chaotic Dyn., 27:5 (2022), 561–571  mathnet  crossref  mathscinet
    3. Latini D., Marquette I., Zhang Ya.-Zh., “Racah Algebra R(N) From Coalgebraic Structures and Chains of R(3) Substructures”, J. Phys. A-Math. Theor., 54:39 (2021), 395202  crossref  mathscinet  isi  scopus
    4. Latini D., Marquette I., Zhang Ya.-Zh., “Embedding of the Racah Algebra R(N) and Superintegrability”, Ann. Phys., 426 (2021), 168397  crossref  mathscinet  isi  scopus
    5. Gonera C., Gonera J., “New Superintegrable Models on Spaces of Constant Curvature”, Ann. Phys., 413 (2020), 168052  crossref  mathscinet  zmath  isi  scopus
    6. D. Latini, “Universal chain structure of quadratic algebras for superintegrable systems with coalgebra symmetry”, J. Phys. A-Math. Theor., 52:12 (2019), 125202  crossref  isi  scopus
    7. Shengda Hu, Manuele Santoprete, “Suslov Problem with the Clebsch–Tisserand Potential”, Regul. Chaotic Dyn., 23:2 (2018), 193–211  mathnet  crossref
    8. G. Gubbiotti, D. Latini, “A multiple scales approach to maximal superintegrability”, J. Phys. A-Math. Theor., 51:28 (2018), 285201  crossref  mathscinet  zmath  isi  scopus
    9. Galliano Valent, “Superintegrable Models on Riemannian Surfaces of Revolution with Integrals of any Integer Degree (I)”, Regul. Chaotic Dyn., 22:4 (2017), 319–352  mathnet  crossref
    10. A. V. Tsiganov, “Two integrable systems with integrals of motion of degree four”, Theoret. and Math. Phys., 186:3 (2016), 383–394  mathnet  crossref  crossref  mathscinet  isi  elib
    11. Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “The Spatial Problem of 2 Bodies on a Sphere. Reduction and Stochasticity”, Regul. Chaotic Dyn., 21:5 (2016), 556–580  mathnet  crossref  mathscinet  zmath  elib
    12. M. F. Ranada, “Superintegrable systems with a position dependent mass: Kepler-related and oscillator-related systems”, Phys. Lett. A, 380:27-28 (2016), 2204–2210  crossref  mathscinet  zmath  isi  scopus
    13. Andrey V. Tsiganov, “Killing Tensors with Nonvanishing Haantjes Torsion and Integrable Systems”, Regul. Chaotic Dyn., 20:4 (2015), 463–475  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    14. I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Hamiltonization of elementary nonholonomic systems”, Russ. J. Math. Phys., 22:4 (2015), 444–453  crossref  mathscinet  zmath  isi  scopus
    15. A. Ballesteros, A. Blasco, F. J. Herranz, F. Musso, “An integrable Hénon–Heiles system on the sphere and the hyperbolic plane”, Nonlinearity, 28:11 (2015), 3789–3801  crossref  mathscinet  zmath  isi  scopus
    16. I. A. Bizyaev, “Ob odnom obobschenii sistem tipa Kalodzhero”, Nelineinaya dinam., 10:2 (2014), 209–212  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:260
    References:88
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025