Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/AMS-Regular.js
Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2016, Volume 21, Issue 5, Pages 556–580
DOI: https://doi.org/10.1134/S1560354716050075
(Mi rcd205)
 

This article is cited in 27 scientific papers (total in 27 papers)

The Spatial Problem of 2 Bodies on a Sphere. Reduction and Stochasticity

Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia
Citations (27)
References:
Abstract: In this paper, we consider in detail the 2-body problem in spaces of constant positive curvature S2 and S3. We perform a reduction (analogous to that in rigid body dynamics) after which the problem reduces to analysis of a two-degree-of-freedom system. In the general case, in canonical variables the Hamiltonian does not correspond to any natural mechanical system. In addition, in the general case, the absence of an analytic additional integral follows from the constructed Poincaré section. We also give a review of the historical development of celestial mechanics in spaces of constant curvature and formulate open problems.
Keywords: celestial mechanics, space of constant curvature, reduction, rigid body dynamics, Poincaré section.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Scientific Foundation (project No. 14–50–00005).
Received: 17.08.2016
Accepted: 13.09.2016
Bibliographic databases:
Document Type: Article
MSC: 70F15, 01A85
Language: English
Citation: Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev, “The Spatial Problem of 2 Bodies on a Sphere. Reduction and Stochasticity”, Regul. Chaotic Dyn., 21:5 (2016), 556–580
Citation in format AMSBIB
\Bibitem{BorMamBiz16}
\by Alexey V. Borisov, Ivan S. Mamaev, Ivan A. Bizyaev
\paper The Spatial Problem of 2 Bodies on a Sphere. Reduction and Stochasticity
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 5
\pages 556--580
\mathnet{http://mi.mathnet.ru/rcd205}
\crossref{https://doi.org/10.1134/S1560354716050075}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3556084}
\zmath{https://zbmath.org/?q=an:06662685}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000385167300007}
\elib{https://elibrary.ru/item.asp?id=27573760}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84990889939}
Linking options:
  • https://www.mathnet.ru/eng/rcd205
  • https://www.mathnet.ru/eng/rcd/v21/i5/p556
  • This publication is cited in the following 27 articles:
    1. Toshiaki Fujiwara, Ernesto Pérez-Chavela, “Mass-Independent Shapes for Relative Equilibria in the Two-Dimensional Positively Curved Three-Body Problem”, J Nonlinear Sci, 34:5 (2024)  crossref
    2. Philip Arathoon, “Relative equilibria of mechanical systems with rotational symmetry”, Nonlinearity, 37:9 (2024), 095001  crossref
    3. Toshiaki Fujiwara, Ernesto Pérez-Chavela, “Continuations and Bifurcations of Relative Equilibria for the Positively Curved Three-Body Problem”, Regul. Chaotic Dyn., 29:6 (2024), 803–824  mathnet  crossref
    4. Alain Albouy, “Note on the Attraction of an Ellipsoid in a Spherical Universe”, Proc. Steklov Inst. Math., 327 (2024), 12–19  mathnet  crossref  crossref
    5. Toshiaki Fujiwara, Ernesto Pérez-Chavela, “Three-Body Relative Equilibria on S2”, Regul. Chaotic Dyn., 28:4-5 (2023), 690–706  mathnet  crossref
    6. Bengochea A., Garcia-Azpeitia C., Perez-Chavela E., Roldan P., “Continuation of Relative Equilibria in the N-Body Problem to Spaces of Constant Curvature”, J. Differ. Equ., 307 (2022), 137–159  crossref  mathscinet  isi  scopus
    7. Juan Manuel Sánchez-Cerritos, Liang Ding, Jinlong Wei, “Equilibrium points in restricted problems on S2 and H2”, Journal of Mathematical Physics, 63:6 (2022)  crossref
    8. Juan Manuel Sánchez-Cerritos, Ernesto Pérez-Chavela, “Hyperbolic regularization of the restricted three–body problem on curved spaces”, Anal.Math.Phys., 12:1 (2022)  crossref
    9. Garcia-Naranjo L.C. Montaldi J., “Attracting and Repelling 2-Body Problems on a Family of Surfaces of Constant Curvature”, J. Dyn. Differ. Equ., 33:4 (2021), 1579–1603  crossref  isi  scopus
    10. Tomasz Stachowiak, Andrzej J. Maciejewski, “Non-Integrability of the Kepler and the Two-Body Problems on the Heisenberg Group”, SIGMA, 17 (2021), 074, 12 pp.  mathnet  crossref
    11. Jackman C., “Secular Dynamics For Curved Two-Body Problems”, J. Dyn. Differ. Equ., 2021  crossref  isi  scopus
    12. E. Perez-Chavela, J. M. Sanchez-Cerritos, “Relative equilibria for the positive curved n-body problem”, Commun. Nonlinear Sci. Numer. Simul., 82 (2020), 104994  crossref  mathscinet  zmath  isi  scopus
    13. E. A. Malkov, A. A. Bekov, S. B. Momynov, I. B. Beckmuhamedov, D. M. Kurmangaliyev, A. M. Mukametzhan, I. S. Orynqul, “Investigation of two fixed centers problem and Henon-Heiles potential based on the Poincare section”, News Natl. Acad. Sci. Rep. Kazakhstan-Ser. Phys.-Math., 1:329 (2020), 55–61  crossref  isi
    14. J. M. Sanchez-Cerritos, “Local regularization of a restricted problem on H-2 with primaries on hyperbolic motion”, J. Geom. Phys., 157 (2020), 103806  crossref  mathscinet  zmath  isi  scopus
    15. Philip Arathoon, “Singular Reduction of the 2-Body Problem on the 3-Sphere and the 4-Dimensional Spinning Top”, Regul. Chaotic Dyn., 24:4 (2019), 370–391  mathnet  crossref  mathscinet
    16. A. Albouy, L. Zhao, “Lambert's theorem and projective dynamics”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 377:2158 (2019), 20180417  crossref  mathscinet  isi  scopus
    17. D. G. Dritschel, “Point mass dynamics on spherical hypersurfaces”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 377:2158 (2019), 20180349  crossref  mathscinet  isi  scopus
    18. E. Perez-Chavela, J. M. Sanchez-Cerritos, “Regularization of the restricted (n+1)-body problem on curved spaces”, Astrophys. Space Sci., 364:10 (2019), 170  crossref  mathscinet  isi  scopus
    19. W. Szuminski, “On certain integrable and superintegrable weight-homogeneous Hamiltonian systems”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 600–616  crossref  mathscinet  isi  scopus
    20. Miguel A.  González León, Juan Mateos Guilarte, Marina de la Torre Mayado, Integrability, Supersymmetry and Coherent States, 2019, 359  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:288
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025