Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2015, Volume 206, Issue 12, Pages 1682–1706
DOI: https://doi.org/10.1070/SM2015v206n12ABEH004509
(Mi sm8564)
 

This article is cited in 11 scientific papers (total in 11 papers)

Homogeneous systems with quadratic integrals, Lie-Poisson quasibrackets, and Kovalevskaya's method

I. A. Bizyaev, V. V. Kozlov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We consider differential equations with quadratic right-hand sides that admit two quadratic first integrals, one of which is a positive-definite quadratic form. We indicate conditions of general nature under which a linear change of variables reduces this system to a certain ‘canonical’ form. Under these conditions, the system turns out to be divergenceless and can be reduced to a Hamiltonian form, but the corresponding linear Lie-Poisson bracket does not always satisfy the Jacobi identity. In the three-dimensional case, the equations can be reduced to the classical equations of the Euler top, and in four-dimensional space, the system turns out to be superintegrable and coincides with the Euler-Poincaré equations on some Lie algebra. In the five-dimensional case we find a reducing multiplier after multiplying by which the Poisson bracket satisfies the Jacobi identity. In the general case for n>5 we prove the absence of a reducing multiplier. As an example we consider a system of Lotka-Volterra type with quadratic right-hand sides that was studied by Kovalevskaya from the viewpoint of conditions of uniqueness of its solutions as functions of complex time.
Bibliography: 38 titles.
Keywords: first integrals, conformally Hamiltonian system, Poisson bracket, Kovalevskaya system, dynamical systems with quadratic right-hand sides.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant no. 14-50-00005.
Received: 30.06.2015
Bibliographic databases:
Document Type: Article
UDC: 517.925
MSC: Primary 37J05; Secondary 37J30, 37J35, 70E45, 70H05, 70H06, 70H07
Language: English
Original paper language: Russian
Citation: I. A. Bizyaev, V. V. Kozlov, “Homogeneous systems with quadratic integrals, Lie-Poisson quasibrackets, and Kovalevskaya's method”, Sb. Math., 206:12 (2015), 1682–1706
Citation in format AMSBIB
\Bibitem{BizKoz15}
\by I.~A.~Bizyaev, V.~V.~Kozlov
\paper Homogeneous systems with quadratic integrals, Lie-Poisson quasibrackets, and Kovalevskaya's method
\jour Sb. Math.
\yr 2015
\vol 206
\issue 12
\pages 1682--1706
\mathnet{http://mi.mathnet.ru/eng/sm8564}
\crossref{https://doi.org/10.1070/SM2015v206n12ABEH004509}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438573}
\zmath{https://zbmath.org/?q=an:1358.37099}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015SbMat.206.1682B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000370791500002}
\elib{https://elibrary.ru/item.asp?id=24850632}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84959923313}
Linking options:
  • https://www.mathnet.ru/eng/sm8564
  • https://doi.org/10.1070/SM2015v206n12ABEH004509
  • https://www.mathnet.ru/eng/sm/v206/i12/p29
  • This publication is cited in the following 11 articles:
    1. A. V. Tsyganov, “O tenzornykh invariantakh dlya integriruemykh sluchaev dvizheniya tverdogo tela Eilera, Lagranzha i Kovalevskoi”, Izv. RAN. Ser. matem., 89:2 (2025), 161–188  mathnet  crossref
    2. Peter H. van der Kamp, David I. McLaren, G. R. W. Quispel, “On a Quadratic Poisson Algebra and Integrable Lotka – Volterra Systems with Solutions in Terms of Lambert's $W$ Function”, Regul. Chaot. Dyn., 2024  crossref
    3. Valery V. Kozlov, “Integrals of Circulatory Systems Which are Quadratic in Momenta”, Regul. Chaotic Dyn., 26:6 (2021), 647–657  mathnet  crossref  mathscinet
    4. Kozlov V.V., “On the Ergodic Theory of Equations of Mathematical Physics”, Russ. J. Math. Phys., 28:1 (2021), 73–83  crossref  mathscinet  isi
    5. V. V. Kozlov, “Tensor invariants and integration of differential equations”, Russian Math. Surveys, 74:1 (2019), 111–140  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. V. V. Kozlov, “Multi-Hamiltonian property of a linear system with quadratic invariant”, St. Petersburg Mathematical Journal, 30:5 (2019), 877–883  mathnet  crossref  mathscinet  isi  elib
    7. A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics”, Russian Math. Surveys, 72:5 (2017), 783–840  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “The Hojman Construction and Hamiltonization of Nonholonomic Systems”, SIGMA, 12 (2016), 012, 19 pp.  mathnet  crossref
    9. A. V. Borisov, P. E. Ryabov, S. V. Sokolov, “Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid”, Math. Notes, 99:6 (2016), 834–839  mathnet  crossref  crossref  mathscinet  isi  elib
    10. V. V. Kozlov, “On the equations of the hydrodynamic type”, J. Appl. Math. Mech., 80:3 (2016), 209–214  mathnet  crossref  mathscinet  isi  elib  elib  scopus
    11. I. A. Bizyaev, A. V. Bolsinov, A. V. Borisov, I. S. Mamaev, “Topologiya i bifurkatsii v negolonomnoi mekhanike”, Nelineinaya dinam., 11:4 (2015), 735–762  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:787
    Russian version PDF:264
    English version PDF:70
    References:86
    First page:36
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025