Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 6, Pages 848–854
DOI: https://doi.org/10.4213/mzm11051
(Mi mzm11051)
 

This article is cited in 15 scientific papers (total in 16 papers)

Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid

A. V. Borisovab, P. E. Ryabovcd, S. V. Sokolovcd

a Udmurt State University, Izhevsk
b Izhevsk State Technical University
c A. A. Blagonravov Mechanical Engineering Institute RAS, Moscow
d Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
References:
Abstract: We consider an integrable Hamiltonian system describing the motion of a circular cylinder and a vortex filament in an ideal fluid. We construct bifurcation diagrams and bifurcation complexes for the case in which the integral manifold is compact and for various topological structures of the symplectic leaf. The types of motions corresponding to the bifurcation curves and their stability are discussed.
Keywords: Hamiltonian system, integrability, bifurcation complex.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00395-а
15-08-09093-а
14-01-00119
16-01-00170
15-41-02049
16-01-00809
The first author was supported by the Russian Foundation for Basic Research under grants 14-01-00395-a and 15-08-09093-a. The second author was supported by the Russian Foundation for Basic Research under grants 14-01-00119 and 16-01-00170 and by the Russian Foundation for Basic Research together with the Government of the Volgograd oblast under joint grant 15-41-02049. The third author was supported by the Russian Foundation for Basic Research under grants 16-01-00170 and 16-01-00809.
Received: 25.12.2015
English version:
Mathematical Notes, 2016, Volume 99, Issue 6, Pages 834–839
DOI: https://doi.org/10.1134/S0001434616050217
Bibliographic databases:
Document Type: Article
UDC: 517.938.5+512.77
PACS: 02.30.Ik
Language: Russian
Citation: A. V. Borisov, P. E. Ryabov, S. V. Sokolov, “Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid”, Mat. Zametki, 99:6 (2016), 848–854; Math. Notes, 99:6 (2016), 834–839
Citation in format AMSBIB
\Bibitem{BorRyaSok16}
\by A.~V.~Borisov, P.~E.~Ryabov, S.~V.~Sokolov
\paper Bifurcation Analysis of the Motion of a Cylinder and a Point Vortex in an Ideal Fluid
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 6
\pages 848--854
\mathnet{http://mi.mathnet.ru/mzm11051}
\crossref{https://doi.org/10.4213/mzm11051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507449}
\elib{https://elibrary.ru/item.asp?id=26414308}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 6
\pages 834--839
\crossref{https://doi.org/10.1134/S0001434616050217}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382176900021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977156731}
Linking options:
  • https://www.mathnet.ru/eng/mzm11051
  • https://doi.org/10.4213/mzm11051
  • https://www.mathnet.ru/eng/mzm/v99/i6/p848
  • This publication is cited in the following 16 articles:
    1. Sergei V. Sokolov, Pavel E. Ryabov, Sergei M. Ramodanov, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2022, 3030, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2022, 2024, 080001  crossref
    2. Sergei V. Sokolov, Sergei M. Ramodanov, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2611, INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING ICCMSE 2021, 2022, 100007  crossref
    3. S. V. Sokolov, “Pamyati Alekseya Vladimirovicha Borisova”, Kompyuternye issledovaniya i modelirovanie, 13:1 (2021), 9–14  mathnet  crossref
    4. Ivan A. Bizyaev, Ivan S. Mamaev, “Qualitative Analysis of the Dynamics of a Balanced Circular Foil and a Vortex”, Regul. Chaotic Dyn., 26:6 (2021), 658–674  mathnet  crossref
    5. Sergey M. Ramodanov, Sergey V. Sokolov, “Dynamics of a Circular Cylinder and Two Point Vortices in a Perfect Fluid”, Regul. Chaotic Dyn., 26:6 (2021), 675–691  mathnet  crossref
    6. I. S. Mamaev, I. A. Bizyaev, “Dynamics of an unbalanced circular foil and point vortices in an ideal fluid”, Phys. Fluids, 33:8 (2021), 087119  crossref  mathscinet  isi
    7. Ivan S. Mamaev, Ivan A. Bizyaev, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020, 1  crossref
    8. P. E. Ryabov, “Bifurcations of Liouville tori in a system of two vortices of positive intensity in a Bose–Einstein condensate”, Dokl. Math., 99:2 (2019), 225–229  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    9. P. E. Ryabov, S. V. Sokolov, “Phase Topology of Two Vortices of Identical Intensities in a Bose – Einstein Condensate”, Rus. J. Nonlin. Dyn., 15:1 (2019), 59–66  mathnet  crossref  elib
    10. Pavel E. Ryabov, Artemiy A. Shadrin, “Bifurcation Diagram of One Generalized Integrable Model of Vortex Dynamics”, Regul. Chaotic Dyn., 24:4 (2019), 418–431  mathnet  crossref  mathscinet
    11. S. V. Sokolov, P. E. Ryabov, “Bifurcation diagram of the two vortices in a Bose–Einstein condensate with intensities of the same signs”, Dokl. Math., 97:3 (2018), 286–290  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    12. P. E. Ryabov, “Explicit integration of the system of invariant relations for the case of M. Adler and P. Van Moerbeke”, Dokl. Math., 95:1 (2017), 17–20  crossref  mathscinet  zmath  isi  scopus
    13. Sergei V. Sokolov, Pavel E. Ryabov, “Bifurcation Analysis of the Dynamics of Two Vortices in a Bose – Einstein Condensate. The Case of Intensities of Opposite Signs”, Regul. Chaotic Dyn., 22:8 (2017), 976–995  mathnet  crossref
    14. S. V. Sokolov, “Motion of a cylinder rigid body interacting with point vortices”, Coupled Problems in Science and Engineering VII (Coupled Problems 2017), eds. M. Papadrakakis, E. Onate, B. Schrefler, Int Center Numerical Methods Engineering, 2017, 204–215  isi
    15. P. E. Ryabov, “YaVNOE INTEGRIROVANIE SISTEMY INVARIANTNYKh SOOTNOShENII DLYa SLUChAYa M. ADLERA I P. VAN MERBEKE, “Doklady Akademii nauk””, Doklady Akademii nauk, 2017, no. 2, 130  crossref
    16. E. V. Vetchanin, A. A. Kilin, I. S. Mamaev, “Control of the motion of a helical body in a fluid using rotors”, Regul. Chaotic Dyn., 21:7-8 (2016), 874–884  mathnet  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:595
    Full-text PDF :82
    References:98
    First page:38
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025