Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 6, Pages 832–847
DOI: https://doi.org/10.4213/mzm11067
(Mi mzm11067)
 

This article is cited in 4 scientific papers (total in 4 papers)

Jacobi-Type Differential Relations for the Lauricella Function F(N)DF(N)D

S. I. Bezrodnykhabc

a Peoples Friendship University of Russia, Moscow
b Federal Research Center "Computer Science and Control" of Russian Academy of Sciences
c Lomonosov Moscow State University, P. K. Sternberg Astronomical Institute
Full-text PDF (588 kB) Citations (4)
References:
Abstract: For the generalized Lauricella hypergeometric function F(N)DF(N)D, Jacobi-type differential relations are obtained and their proof is given. A new system of partial differential equations for the function F(N)DF(N)D is derived. Relations between associated Lauricella functions are presented. These results possess a wide range of applications, including the theory of Riemann–Hilbert boundary-value problem.
Keywords: generalized Lauricella hypergeometric function, Jacobi-type differential relation, Jacobi identity, Gauss function, Christoffel–Schwarz integral.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00781
16-07-01195
Russian Academy of Sciences - Federal Agency for Scientific Organizations
This work was supported by the Russian Foundation for Basic Research under grants 16-01-00781 and 16-07-01195 and by the program of the Russian Academy of Sciences “Contemporary problems of Theoretical Mathematics” (project “Optimal algorithms for the solution of problems of mathematical physics”).
Received: 19.01.2016
English version:
Mathematical Notes, 2016, Volume 99, Issue 6, Pages 821–833
DOI: https://doi.org/10.1134/S0001434616050205
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: S. I. Bezrodnykh, “Jacobi-Type Differential Relations for the Lauricella Function F(N)DF(N)D”, Mat. Zametki, 99:6 (2016), 832–847; Math. Notes, 99:6 (2016), 821–833
Citation in format AMSBIB
\Bibitem{Bez16}
\by S.~I.~Bezrodnykh
\paper Jacobi-Type Differential Relations for the Lauricella Function $F_D^{(N)}$
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 6
\pages 832--847
\mathnet{http://mi.mathnet.ru/mzm11067}
\crossref{https://doi.org/10.4213/mzm11067}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507448}
\elib{https://elibrary.ru/item.asp?id=26414306}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 6
\pages 821--833
\crossref{https://doi.org/10.1134/S0001434616050205}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382176900020}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977070903}
Linking options:
  • https://www.mathnet.ru/eng/mzm11067
  • https://doi.org/10.4213/mzm11067
  • https://www.mathnet.ru/eng/mzm/v99/i6/p832
  • This publication is cited in the following 4 articles:
    1. A. Hasanov, T. K. Yuldashev, “Analytic Continuation Formulas for the Hypergeometric Functions in Three Variables of Second Order”, Lobachevskii J Math, 43:2 (2022), 386  crossref
    2. S. I. Bezrodnykh, “The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann–Hilbert problem, and some applications”, Russian Math. Surveys, 73:6 (2018), 941–1031  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. S. I. Bezrodnykh, “Finding the Coefficients in the New Representation of the Solution of the Riemann–Hilbert Problem Using the Lauricella Function”, Math. Notes, 101:5 (2017), 759–777  mathnet  crossref  crossref  mathscinet  isi  elib
    4. S. I. Bezrodnykh, V. I. Vlasov, “On a New Representation for the Solution of the Riemann–Hilbert Problem”, Math. Notes, 99:6 (2016), 932–937  mathnet  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:559
    Full-text PDF :85
    References:112
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025