Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2018, Volume 73, Issue 6, Pages 941–1031
DOI: https://doi.org/10.1070/RM9841
(Mi rm9841)
 

This article is cited in 31 scientific papers (total in 31 papers)

The Lauricella hypergeometric function F(N)DF(N)D, the Riemann–Hilbert problem, and some applications

S. I. Bezrodnykhab

a Dorodnicyn Computing Centre of Russian Academy of Sciences
b Peoples' Friendship University of Russia
References:
Abstract: The problem of analytic continuation is considered for the Lauricella function F(N)DF(N)D, a generalized hypergeometric functions of NN complex variables. For an arbitrary NN a complete set of formulae is given for its analytic continuation outside the boundary of the unit polydisk, where it is defined originally by an NN-variate hypergeometric series. Such formulae represent F(N)DF(N)D in suitable subdomains of CN in terms of other generalized hypergeometric series, which solve the same system of partial differential equations as F(N)D. These hypergeometric series are the N-dimensional analogue of Kummer's solutions in the theory of Gauss's classical hypergeometric equation. The use of this function in the theory of the Riemann–Hilbert problem and its applications to the Schwarz–Christoffel parameter problem and problems in plasma physics are also discussed.
Bibliography: 163 titles.
Keywords: multivariate hypergeometric functions, systems of partial differential equations, analytic continuation, Riemann–Hilbert problem, Schwarz–Christoffel integral, crowding problem, magnetic reconnection phenomenon.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 5-100
Russian Foundation for Basic Research 16-01-00781
16-07-01195
This research was carried out with the support of the Peoples' Friendship University of Russia, programme “5-100”, and the Russian Foundation for Basic Research (grant nos. 16-01-00781 and 16-07-01195).
Received: 18.07.2018
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: Primary 33C65, 30E25, 30C20; Secondary 82D10, 85A15
Language: English
Original paper language: Russian
Citation: S. I. Bezrodnykh, “The Lauricella hypergeometric function F(N)D, the Riemann–Hilbert problem, and some applications”, Russian Math. Surveys, 73:6 (2018), 941–1031
Citation in format AMSBIB
\Bibitem{Bez18}
\by S.~I.~Bezrodnykh
\paper The Lauricella hypergeometric function $F_D^{(N)}$, the Riemann--Hilbert problem, and some applications
\jour Russian Math. Surveys
\yr 2018
\vol 73
\issue 6
\pages 941--1031
\mathnet{http://mi.mathnet.ru/eng/rm9841}
\crossref{https://doi.org/10.1070/RM9841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881788}
\zmath{https://zbmath.org/?q=an:1428.33027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018RuMaS..73..941B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460154500001}
\elib{https://elibrary.ru/item.asp?id=36448077}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85063482830}
Linking options:
  • https://www.mathnet.ru/eng/rm9841
  • https://doi.org/10.1070/RM9841
  • https://www.mathnet.ru/eng/rm/v73/i6/p3
  • This publication is cited in the following 31 articles:
    1. Luca Cassia, Pietro Longhi, Maxim Zabzine, “Symplectic Cuts and Open/Closed Strings II”, Ann. Henri Poincaré, 2025  crossref
    2. Valerii K. Beloshapka, “On hypergeometric functions of two variables of complexity one”, Zhurn. SFU. Ser. Matem. i fiz., 17:2 (2024), 175–188  mathnet
    3. S. I. Bezrodnykh, “Generalizations of the Jacobi identity to the case of the Lauricella function FD(N)”, Integral Transforms and Special Functions, 2024, 1  crossref
    4. Z. O. Arzikulov, T. G. Ergashev, “Some Systems of PDE Associated with the Multiple Confluent Hypergeometric Functions and Their Applications”, Lobachevskii J Math, 45:2 (2024), 591  crossref
    5. S. I. Bezrodnykh, “Applying Lauricella's function to construct conformal mapping of polygons' exteriors”, Math. Notes, 116:6 (2024), 1183–1203  mathnet  crossref  crossref
    6. S. I. Bezrodnykh, O. V. Dunin-Barkovskaya, “Estimation of the Remainder Terms of Certain Horn Hypergeometric Series”, Comput. Math. and Math. Phys., 64:12 (2024), 2737  crossref
    7. S. I. Bezrodnykh, O. V. Dunin-Barkovskaya, “Estimation of the remainder term of the Lauricella series $f^{(n)}_d$”, Math. Notes, 116:5 (2024), 905–919  mathnet  mathnet  crossref
    8. S. I. Bezrodnykh, “Constructing basises in solution space of the system of equations for the Lauricella Function $\mathrm{F}_D^{(N)}$”, Integral Transforms and Special Functions, 34:11 (2023), 813–834  crossref  mathscinet
    9. A. S. Demidov, “Pseudo-differential operators and Fourier operators”, Equations of Mathematical Physics, Springer, Cham, 2023, 91–192  crossref
    10. W. Chen, L. Tang, L. Tian, X. Yang, “Breather and multiwave solutions to an extended (3+1)-dimensional Jimbo–Miwa-like equation”, Applied Mathematics Letters, 145 (2023), 108785  crossref  mathscinet  zmath
    11. S. L. Skorokhodov, “Conformal mapping of a $\mathbb{Z}$-shaped domain”, Comput. Math. Math. Phys., 63:12 (2023), 2451–2473  mathnet  mathnet  crossref  crossref  mathscinet  mathscinet
    12. S. I. Bezrodnykh, “Formulas for computing Euler-type integrals and their application to the problem of constructing a conformal mapping of polygons”, Comput. Math. Math. Phys., 63:11 (2023), 1955–1988  mathnet  mathnet  crossref  crossref  mathscinet
    13. S. I. Bezrodnykh, “Analytic continuation of Lauricella's function $F_D^{(N)}$ for large in modulo variables near hyperplanes $\{z_j=z_l\}$”, Integral Transform. Spec. Funct., 33:4 (2022), 276–291  crossref  mathscinet  isi
    14. I S. Bezrodnykh, “Analytic continuation of Lauricella's function $F_D^{(N)}$ for variables close to unit near hyperplanes $\{z_j=z_l\}$”, Integral Transform. Spec. Funct., 33:5 (2022), 419–433  crossref  mathscinet  isi  scopus
    15. S. I. Bezrodnykh, “Lauricella Function and the Conformal Mapping of Polygons”, Math. Notes, 112:4 (2022), 505–522  mathnet  crossref  crossref  mathscinet
    16. A. Shehata, S. I. Moustafa, J. Younis, H. Aydi, K.-J. Wang, “Some formulas for Horn’s hypergeometric function $G_B$ of three variables”, Advances in Mathematical Physics, 2022 (2022), 1  crossref  mathscinet
    17. S. I. Bezrodnykh, “Analytic continuation of the Kampé de Fériet function and the general double Horn series”, Integral Transforms and Special Functions, 33:11 (2022), 908  crossref  mathscinet
    18. S. I. Bezrodnykh, “Formulas for analytic continuation of Horn functions of two variables”, Comput. Math. and Math. Phys., 62:6 (2022), 884  crossref  mathscinet
    19. V. I. Vlasov, S. L. Skorokhodov, “Conformal mapping of an $L$-shaped domain in analytical form”, Comput. Math. and Math. Phys., 62:12 (2022), 1971  crossref  mathscinet
    20. S. I. Bezrodnykh, “Formulas for computing the Lauricella function in the case of crowding of variables”, Comput. Math. and Math. Phys., 62:12 (2022), 2069  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1282
    Russian version PDF:534
    English version PDF:220
    References:145
    First page:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025