Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2023, Volume 63, Number 11, Pages 1763–1798
DOI: https://doi.org/10.31857/S004446692311008X
(Mi zvmmf11641)
 

This article is cited in 5 scientific papers (total in 5 papers)

General numerical methods

Formulas for computing Euler-type integrals and their application to the problem of constructing a conformal mapping of polygons

S. I. Bezrodnykh

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, 119333, Moscow, Russia
Citations (5)
Abstract: This paper deals with Euler-type integrals and the closely related Lauricella function F(N)DF(N)D, which is a hypergeometric function of many complex variables z1,,zNz1,,zN. For F(N)DF(N)D new analytic continuation formulas are found that represent it in the form of Horn hypergeometric series exponentially converging in corresponding subdomains of CN, including near hyperplanes of the form {zj=zl}, j, l=¯1,N, jl. The continuation formulas and identities for F(N)D found in this paper make up an effective apparatus for computing this function and Euler-type integrals expressed in terms of it in the entire complex space CN, including complicated cases when the variables form one or several groups of closely spaced neighbors. The results are used to compute parameters of the Schwarz–Christoffel integral in the case of crowding and to construct conformal mappings of polygons.
Key words: Euler-type hypergeometric integrals, Lauricella and Horn functions, analytic continuation, Schwarz–Christoffel integral, crowding effect.
Funding agency Grant number
Russian Science Foundation 22-21-00727
This work was financially supported by the Russian Science Foundation, grant no. 22-21-00727, https://rscf.ru/en/project/22-21-00727/.
Received: 20.04.2023
Revised: 25.05.2023
Accepted: 09.06.2023
English version:
Computational Mathematics and Mathematical Physics, 2023, Volume 63, Issue 11, Pages 1955–1988
DOI: https://doi.org/10.1134/S0965542523110052
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: S. I. Bezrodnykh, “Formulas for computing Euler-type integrals and their application to the problem of constructing a conformal mapping of polygons”, Zh. Vychisl. Mat. Mat. Fiz., 63:11 (2023), 1763–1798; Comput. Math. Math. Phys., 63:11 (2023), 1955–1988
Citation in format AMSBIB
\Bibitem{Bez23}
\by S.~I.~Bezrodnykh
\paper Formulas for computing Euler-type integrals and their application to the problem of constructing a conformal mapping of polygons
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2023
\vol 63
\issue 11
\pages 1763--1798
\mathnet{http://mi.mathnet.ru/zvmmf11641}
\crossref{https://doi.org/10.31857/S004446692311008X}
\elib{https://elibrary.ru/item.asp?id=54720582}
\transl
\jour Comput. Math. Math. Phys.
\yr 2023
\vol 63
\issue 11
\pages 1955--1988
\crossref{https://doi.org/10.1134/S0965542523110052}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf11641
  • https://www.mathnet.ru/eng/zvmmf/v63/i11/p1763
  • This publication is cited in the following 5 articles:
    1. Dan Luo, Yibin Lu, Xin Zhao, “Computational method of conformal mapping from unbounded multi-connected regions onto annulus with spiral slit domains”, J. Phys.: Conf. Ser., 2964:1 (2025), 012058  crossref
    2. S. I. Bezrodnykh, “Applying Lauricella's function to construct conformal mapping of polygons' exteriors”, Math. Notes, 116:6 (2024), 1183–1203  mathnet  crossref  crossref
    3. S. I. Bezrodnykh, O. V. Dunin-Barkovskaya, “Estimation of the Remainder Terms of Certain Horn Hypergeometric Series”, Comput. Math. and Math. Phys., 64:12 (2024), 2737  crossref
    4. S. I. Bezrodnykh, O. V. Dunin-Barkovskaya, “Estimation of the remainder term of the Lauricella series f(n)d”, Math. Notes, 116:5 (2024), 905–919  mathnet  mathnet  crossref
    5. S. L. Skorokhodov, “Conformal mapping of a Z-shaped domain”, Comput. Math. Math. Phys., 63:12 (2023), 2451–2473  mathnet  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:136
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025