Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 112, Issue 4, Pages 500–520
DOI: https://doi.org/10.4213/mzm13694
(Mi mzm13694)
 

This article is cited in 6 scientific papers (total in 6 papers)

Lauricella Function and the Conformal Mapping of Polygons

S. I. Bezrodnykh

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
Full-text PDF (778 kB) Citations (6)
References:
Abstract: In this paper, some progress has been made in solving the problem of calculating the parameters of the Schwarz–Christoffel integral realizing a conformal mapping of a canonical domain onto a polygon. It is shown that an effective solution of this problem can be found by applying the formulas of analytic continuation of the Lauricella function FD(N), which is a hypergeometric function of N complex variables. Several new formulas for such a continuation of the function FD(N) are presented that are oriented to the calculation of the parameters of the Schwarz–Christoffel integral in the “crowding” situation. An example of solving the parameter problem for a complicated polygon is given.
Keywords: Schwarz–Christoffel integral, hypergeometric functions of many variables, analytic continuation, crowding.
Funding agency Grant number
Russian Science Foundation 22-21-00727
This work was supported by the Russian Science Foundation under grant 22-21-00727, https:// rscf.ru/ project/22-21-00727/.
Received: 05.05.2022
English version:
Mathematical Notes, 2022, Volume 112, Issue 4, Pages 505–522
DOI: https://doi.org/10.1134/S0001434622090218
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. I. Bezrodnykh, “Lauricella Function and the Conformal Mapping of Polygons”, Mat. Zametki, 112:4 (2022), 500–520; Math. Notes, 112:4 (2022), 505–522
Citation in format AMSBIB
\Bibitem{Bez22}
\by S.~I.~Bezrodnykh
\paper Lauricella Function and the Conformal Mapping of Polygons
\jour Mat. Zametki
\yr 2022
\vol 112
\issue 4
\pages 500--520
\mathnet{http://mi.mathnet.ru/mzm13694}
\crossref{https://doi.org/10.4213/mzm13694}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4538786}
\transl
\jour Math. Notes
\yr 2022
\vol 112
\issue 4
\pages 505--522
\crossref{https://doi.org/10.1134/S0001434622090218}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85140307659}
Linking options:
  • https://www.mathnet.ru/eng/mzm13694
  • https://doi.org/10.4213/mzm13694
  • https://www.mathnet.ru/eng/mzm/v112/i4/p500
  • This publication is cited in the following 6 articles:
    1. S. I. Bezrodnykh, “Generalizations of the Jacobi identity to the case of the Lauricella function FD(N)”, Integral Transforms and Special Functions, 2024, 1  crossref
    2. S. I. Bezrodnykh, “Applying Lauricella's function to construct conformal mapping of polygons' exteriors”, Math. Notes, 116:6 (2024), 1183–1203  mathnet  crossref  crossref
    3. S. I. Bezrodnykh, “Constructing basises in solution space of the system of equations for the Lauricella Function F(N)D”, Integral Transforms and Special Functions, 34:11 (2023), 813  crossref  mathscinet  zmath
    4. A. Posadskii, S. Nasyrov, “One-parameter families of conformal mappings of the half-plane onto polygonal domains with several slits”, Lobachevskii J. Math., 44:4 (2023), 1448  crossref  mathscinet  zmath
    5. S. L. Skorokhodov, “Conformal mapping of a Z-shaped domain”, Comput. Math. Math. Phys., 63:12 (2023), 2451–2473  mathnet  mathnet  crossref  crossref  mathscinet
    6. S. I. Bezrodnykh, “Formulas for computing Euler-type integrals and their application to the problem of constructing a conformal mapping of polygons”, Comput. Math. Math. Phys., 63:11 (2023), 1955–1988  mathnet  mathnet  crossref  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:319
    Full-text PDF :74
    References:89
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025