Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2014, Volume 69, Issue 3, Pages 481–538
DOI: https://doi.org/10.1070/RM2014v069n03ABEH004899
(Mi rm9587)
 

This article is cited in 28 scientific papers (total in 28 papers)

Non-holonomic dynamics and Poisson geometry

A. V. Borisova, I. S. Mamaevab, A. V. Tsiganovc

a Udmurt State University, Izhevsk
b Izhevsk State Technical University
c Saint Petersburg State University
References:
Abstract: This is a survey of basic facts presently known about non-linear Poisson structures in the analysis of integrable systems in non-holonomic mechanics. It is shown that by using the theory of Poisson deformations it is possible to reduce various non-holonomic systems to dynamical systems on well-understood phase spaces equipped with linear Lie–Poisson brackets. As a result, not only can different non-holonomic systems be compared, but also fairly advanced methods of Poisson geometry and topology can be used for investigating them.
Bibliography: 95 titles.
Keywords: non-holonomic systems, Poisson bracket, Chaplygin ball, Suslov system, Veselova system.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation
Russian Science Foundation 14-19-01303
The research of the first author was carried out in the framework of the state contract "Regular and Chaotic Dynamics" with Udmurt State University. The research of the second author was supported by grant no. 14-19-01303 of the Russian Science Foundation ("Dynamics and Control of Mobile Robototechnological Systems").
Received: 23.12.2013
Bibliographic databases:
Document Type: Article
UDC: 514.853+517.925+531.38+531.012
MSC: Primary 70F25, 70G45; Secondary 53D17
Language: English
Original paper language: Russian
Citation: A. V. Borisov, I. S. Mamaev, A. V. Tsiganov, “Non-holonomic dynamics and Poisson geometry”, Russian Math. Surveys, 69:3 (2014), 481–538
Citation in format AMSBIB
\Bibitem{BorMamTsi14}
\by A.~V.~Borisov, I.~S.~Mamaev, A.~V.~Tsiganov
\paper Non-holonomic dynamics and Poisson geometry
\jour Russian Math. Surveys
\yr 2014
\vol 69
\issue 3
\pages 481--538
\mathnet{http://mi.mathnet.ru/eng/rm9587}
\crossref{https://doi.org/10.1070/RM2014v069n03ABEH004899}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3287505}
\zmath{https://zbmath.org/?q=an:06358153}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014RuMaS..69..481B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000341511800004}
\elib{https://elibrary.ru/item.asp?id=21826587}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906814146}
Linking options:
  • https://www.mathnet.ru/eng/rm9587
  • https://doi.org/10.1070/RM2014v069n03ABEH004899
  • https://www.mathnet.ru/eng/rm/v69/i3/p87
  • This publication is cited in the following 28 articles:
    1. A. V. Tsyganov, “O tenzornykh invariantakh dlya integriruemykh sluchaev dvizheniya tverdogo tela Eilera, Lagranzha i Kovalevskoi”, Izv. RAN. Ser. matem., 89:2 (2025), 161–188  mathnet  crossref
    2. Luis C. García-Naranjo, Juan C. Marrero, David Martín de Diego, Paolo E. Petit Valdés, “Almost-Poisson Brackets for Nonholonomic Systems with Gyroscopic Terms and Hamiltonisation”, J Nonlinear Sci, 34:6 (2024)  crossref
    3. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Gyroscopic Chaplygin Systems and Integrable Magnetic Flows on Spheres”, J Nonlinear Sci, 33:3 (2023)  crossref
    4. Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — Nonholonomic Systems with Invariant Measures”, Regul. Chaotic Dyn., 27:4 (2022), 424–442  mathnet  crossref  mathscinet
    5. A. V. Borisov, A. V. Tsiganov, “Chaplygin ball in a solenoidal field”, Russian Math. Surveys, 76:3 (2021), 546–548  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. Alexey V. Borisov, Andrey V. Tsiganov, “On the Nonholonomic Routh Sphere in a Magnetic Field”, Regul. Chaotic Dyn., 25:1 (2020), 18–32  mathnet  crossref  mathscinet
    7. Tsiganov A.V., “On a Time-Dependent Nonholonomic Oscillator”, Russ. J. Math. Phys., 27:3 (2020), 399–409  crossref  mathscinet  zmath  isi
    8. Borisov V A., Tsiganov V A., “The Motion of a Nonholonomic Chaplygin Sphere in a Magnetic Field, the Grioli Problem, and the Barnett-London Effect”, Dokl. Phys., 65:3 (2020), 90–93  crossref  isi  scopus
    9. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Demchenko's nonholonomic case of a gyroscopic ball rolling without sliding over a sphere after his 1923 Belgrade doctoral thesis”, Theor. Appl. Mech., 47:2 (2020), 257–287  mathnet  crossref
    10. Andrey V. Tsiganov, “Hamiltonization and Separation of Variables for a Chaplygin Ball on a Rotating Plane”, Regul. Chaotic Dyn., 24:2 (2019), 171–186  mathnet  crossref
    11. Kurt M. Ehlers, Jair Koiller, “Cartan meets Chaplygin”, Theor. Appl. Mech., 46:1 (2019), 15–46  mathnet  crossref
    12. Vyacheslav P. Kruglov, Sergey P. Kuznetsov, “Topaj – Pikovsky Involution in the Hamiltonian Lattice of Locally Coupled Oscillators”, Regul. Chaotic Dyn., 24:6 (2019), 725–738  mathnet  crossref  mathscinet
    13. Alexey V. Borisov, Andrey V. Tsiganov, “On the Chaplygin Sphere in a Magnetic Field”, Regul. Chaotic Dyn., 24:6 (2019), 739–754  mathnet  crossref  mathscinet
    14. A. V. Borisov, A. V. Tsyganov, “Vliyanie effektov Barnetta-Londona i Einshteina-de Gaaza na dvizhenie negolonomnoi sfery Rausa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:4 (2019), 583–598  mathnet  crossref
    15. B. Jovanovic, “Rolling balls over spheres in Rn”, Nonlinearity, 31:9 (2018), 4006–4030  crossref  mathscinet  zmath  isi  scopus
    16. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “An Invariant Measure and the Probability of a Fall in the Problem of an Inhomogeneous Disk Rolling on a Plane”, Regul. Chaotic Dyn., 23:6 (2018), 665–684  mathnet  crossref  mathscinet
    17. Andrey V. Tsiganov, “Bäcklund Transformations for the Nonholonomic Veselova System”, Regul. Chaotic Dyn., 22:2 (2017), 163–179  mathnet  crossref
    18. Andrey V. Tsiganov, “Integrable Discretization and Deformation of the Nonholonomic Chaplygin Ball”, Regul. Chaotic Dyn., 22:4 (2017), 353–367  mathnet  crossref
    19. P. Balseiro, “Hamiltonization of solids of revolution through reduction”, J. Nonlinear Sci., 27:6 (2017), 2001–2035  crossref  mathscinet  zmath  isi  scopus
    20. A. V. Tsiganov, “Abel's theorem and Bäcklund transformations for the Hamilton–Jacobi equations”, Proc. Steklov Inst. Math., 295 (2016), 243–273  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:953
    Russian version PDF:351
    English version PDF:65
    References:112
    First page:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025