Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2004, Volume 7, Number 1, Pages 13–49 (Mi mt69)  

This article is cited in 27 scientific papers (total in 27 papers)

Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. II

S. K. Vodop'yanova, A. D.-O. Ukhlovb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Khabarovsk State University of Technology
References:
Abstract: We study the properties of the mappings inducing a bounded operator of Lebesgue or Sobolev spaces by change of variable and the properties of the operator of extension of functions in Sobolev classes beyond the domain of definition.
Key words: quasiadditive set function, Lebesgue space, Sobolev space, embedding theorems.
Received: 02.04.2002
Bibliographic databases:
UDC: 517.518.1+517.54
Language: Russian
Citation: S. K. Vodop'yanov, A. D.-O. Ukhlov, “Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. II”, Mat. Tr., 7:1 (2004), 13–49; Siberian Adv. Math., 15:1 (2005), 91–125
Citation in format AMSBIB
\Bibitem{VodUkh04}
\by S.~K.~Vodop'yanov, A.~D.-O.~Ukhlov
\paper Set Functions and Their Applications in the~Theory of Lebesgue and Sobolev Spaces.~II
\jour Mat. Tr.
\yr 2004
\vol 7
\issue 1
\pages 13--49
\mathnet{http://mi.mathnet.ru/mt69}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068275}
\zmath{https://zbmath.org/?q=an:1091.47027}
\elib{https://elibrary.ru/item.asp?id=9530092}
\transl
\jour Siberian Adv. Math.
\yr 2005
\vol 15
\issue 1
\pages 91--125
Linking options:
  • https://www.mathnet.ru/eng/mt69
  • https://www.mathnet.ru/eng/mt/v7/i1/p13
    Cycle of papers
    This publication is cited in the following 27 articles:
    1. M. B. Karmanova, “Ploschad obrazov klassov izmerimykh mnozhestv na gruppakh Karno s sublorentsevoi strukturoi”, Sib. matem. zhurn., 65:5 (2024), 926–952  mathnet  crossref
    2. M. B. Karmanova, “Metric characteristics of classes of compact sets on Carnot groups with sub-Lorentzian structure”, Vladikavk. matem. zhurn., 26:3 (2024), 56–64  mathnet  crossref
    3. S. K. Vodopyanov, “Composition operators in Sobolev spaces on Riemannian manifolds”, Siberian Math. J., 65:6 (2024), 1305–1326  mathnet  crossref  crossref
    4. M. B. Karmanova, “Area of images of measurable sets on depth 2 Carnot manifolds with sub-Lorentzian structure”, Vladikavk. matem. zhurn., 26:4 (2024), 78–86  mathnet  crossref
    5. M. B. Karmanova, “Klassy nekontaktnykh otobrazhenii grupp Karno i metricheskie svoistva”, Sib. matem. zhurn., 64:6 (2023), 1199–1223  mathnet  crossref
    6. M. B. Karmanova, “Lipschitz images of open sets on sub-Lorentzian structures”, Siberian Adv. Math., 34:1 (2024), 67–79  mathnet  crossref  crossref
    7. M. B. Karmanova, “Sub-Lorentzian coarea formula for mappings of Carnot groups”, Siberian Math. J., 63:3 (2022), 485–508  mathnet  crossref  crossref
    8. M. B. Karmanova, “Sub-riemannian properties of the level sets of noncontact mappings of Heisenberg groups”, Siberian Adv. Math., 33:1 (2023), 28–38  mathnet  crossref  crossref
    9. M. B. Karmanova, “The coarea formula for vector functions on Carnot groups with sub-Lorentzian structure”, Siberian Math. J., 62:2 (2021), 239–261  mathnet  crossref  crossref  isi  elib
    10. M. B. Karmanova, “Two-step sub-Lorentzian structures and graph surfaces”, Izv. Math., 84:1 (2020), 52–94  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. M. B. Karmanova, “Three-dimensional graph surfaces on five-dimensional Carnot–Carathéodory spaces”, Siberian Math. J., 59:4 (2018), 657–676  mathnet  crossref  crossref  isi  elib
    12. M. B. Karmanova, “Graph surfaces on five-dimensional sub-Lorentzian structures”, Siberian Math. J., 58:1 (2017), 91–108  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    13. M. B. Karmanova, “Area formulas for classes of Hölder continuous mappings of Carnot groups”, Siberian Math. J., 58:5 (2017), 817–836  mathnet  crossref  crossref  isi  elib  elib
    14. A. V. Menovshchikov, “Composition operators in Orlicz–Sobolev spaces”, Siberian Math. J., 57:5 (2016), 849–859  mathnet  crossref  crossref  isi  elib  elib
    15. M. B. Karmanova, “The area formula for graphs on 4-dimensional 2-step sub-Lorentzian structures”, Siberian Math. J., 56:5 (2015), 852–871  mathnet  crossref  crossref  isi  elib  elib
    16. M. B. Karmanova, “Graph surfaces over three-dimensional Lie groups with sub-Riemannian structure”, Siberian Math. J., 56:6 (2015), 1080–1092  mathnet  crossref  crossref  mathscinet  isi  elib
    17. Karmanova M. Vodopyanov S., “A Coarea Formula for Smooth Contact Mappings of Carnot-Carath,Odory Spaces”, Acta Appl. Math., 128:1 (2013), 67–111  crossref  mathscinet  zmath  isi  elib  scopus
    18. M. B. Karmanova, “The graphs of Lipschitz functions and minimal surfaces on Carnot groups”, Siberian Math. J., 53:4 (2012), 672–690  mathnet  crossref  mathscinet  isi
    19. Ukhlov A., “Composition operators in weighted Sobolev spaces on Carnot groups”, Acta Math Hungar, 133:1–2 (2011), 103–127  crossref  mathscinet  zmath  isi  elib  scopus
    20. Ukhlov A., Vodop'yanov S.K., “Mappings with bounded (P, Q)-distortion on Carnot groups”, Bull Sci Math, 134:6 (2010), 605–634  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:665
    Full-text PDF :242
    References:114
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025