Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2003, Volume 6, Number 2, Pages 14–65 (Mi mt91)  

This article is cited in 64 scientific papers (total in 64 papers)

Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. I

S. K. Vodop'yanova, A. D.-O. Ukhlovb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Khabarovsk State University of Technology
References:
Abstract: We study the properties of mappings inducing a bounded operator of Lebesgue or Sobolev spaces by change of variable and the properties of the operator of extension of functions in Sobolev classes beyond the domain of definition. Throughout, we deduce and apply the properties of quasiadditive functions on open subsets of homogeneous spaces. We estimate the integral of the upper derivative of a set function which implies an easy proof of the Lebesgue Integral Differentiation Theorem and existence of a density almost everywhere.
The article consists of two sections. In Section 1, apart from studying the properties of quasiadditive functions, we find necessary and sufficient conditions on a mapping inducing a bounded extension operator in Lebesgue spaces (in Sobolev spaces with weak first-order derivatives).
Key words: quasiadditive set function, Lebesgue space, Sobolev space, embedding theorems.
Received: 02.04.2002
Bibliographic databases:
UDC: 517.518.1+517.54
Language: Russian
Citation: S. K. Vodop'yanov, A. D.-O. Ukhlov, “Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. I”, Mat. Tr., 6:2 (2003), 14–65; Siberian Adv. Math., 14:4 (2004), 78–125
Citation in format AMSBIB
\Bibitem{VodUkh03}
\by S.~K.~Vodop'yanov, A.~D.-O.~Ukhlov
\paper Set Functions and Their Applications in the~Theory of Lebesgue and Sobolev Spaces.~I
\jour Mat. Tr.
\yr 2003
\vol 6
\issue 2
\pages 14--65
\mathnet{http://mi.mathnet.ru/mt91}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2033646}
\zmath{https://zbmath.org/?q=an:1089.47027|1050.47030}
\elib{https://elibrary.ru/item.asp?id=9530086}
\transl
\jour Siberian Adv. Math.
\yr 2004
\vol 14
\issue 4
\pages 78--125
Linking options:
  • https://www.mathnet.ru/eng/mt91
  • https://www.mathnet.ru/eng/mt/v6/i2/p14
    Cycle of papers
    This publication is cited in the following 64 articles:
    1. S. K. Vodopyanov, S. V. Pavlov, “Funktsionalnye svoistva predelov sobolevskikh gomeomorfizmov s integriruemym iskazheniem”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, SMFN, 70, no. 2, Rossiiskii universitet druzhby narodov, M., 2024, 215–236  mathnet  crossref
    2. S. K. Vodopyanov, “Funktsionalno-geometricheskie svoistva predelov ACL-otobrazhenii s integriruemym iskazheniem”, Sib. matem. zhurn., 65:5 (2024), 820–840  mathnet  crossref
    3. M. B. Karmanova, “Ploschad obrazov klassov izmerimykh mnozhestv na gruppakh Karno s sublorentsevoi strukturoi”, Sib. matem. zhurn., 65:5 (2024), 926–952  mathnet  crossref
    4. M. B. Karmanova, “Metric characteristics of classes of compact sets on Carnot groups with sub-Lorentzian structure”, Vladikavk. matem. zhurn., 26:3 (2024), 56–64  mathnet  crossref
    5. S. K. Vodopyanov, “Composition operators in Sobolev spaces on Riemannian manifolds”, Siberian Math. J., 65:6 (2024), 1305–1326  mathnet  crossref  crossref
    6. M. B. Karmanova, “Area of images of measurable sets on depth 2 Carnot manifolds with sub-Lorentzian structure”, Vladikavk. matem. zhurn., 26:4 (2024), 78–86  mathnet  crossref
    7. Izv. Math., 87:4 (2023), 683–725  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. M. B. Karmanova, “Sub-Riemannian Co-Area Formula for Classes of Noncontact Mappings of Carnot Groups”, Math. Notes, 115:3 (2024), 439–443  mathnet  crossref  crossref  mathscinet
    9. M. B. Karmanova, “Klassy nekontaktnykh otobrazhenii grupp Karno i metricheskie svoistva”, Sib. matem. zhurn., 64:6 (2023), 1199–1223  mathnet  crossref
    10. D. A. Sboev, “Prostranstva BV i ogranichennye operatory kompozitsii BV-funktsii na gruppakh Karno”, Sib. matem. zhurn., 64:6 (2023), 1304–1326  mathnet  crossref
    11. M. B. Karmanova, “Lipschitz images of open sets on sub-Lorentzian structures”, Siberian Adv. Math., 34:1 (2024), 67–79  mathnet  crossref  crossref
    12. Hashash P., Ukhlov A., “On Lipschitz Approximations in Second Order Sobolev Spaces and the Change of Variables Formula”, J. Math. Anal. Appl., 506:2 (2022), 125659  crossref  mathscinet  isi  scopus
    13. Gol'dshtein V., Pchelintsev V., Ukhlov A., “Quasiconformal Mappings and Neumann Eigenvalues of Divergent Elliptic Operators”, Complex Var. Elliptic Equ., 67:9 (2022), 2281–2302  crossref  isi  scopus
    14. S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    15. S. K. Vodopyanov, N. A. Evseev, “Functional and analytical properties of a class of mappings of quasiconformal analysis on Carnot groups”, Siberian Math. J., 63:2 (2022), 233–261  mathnet  crossref  crossref
    16. M. B. Karmanova, “Sub-Lorentzian coarea formula for mappings of Carnot groups”, Siberian Math. J., 63:3 (2022), 485–508  mathnet  crossref  crossref
    17. M. B. Karmanova, “Sub-riemannian properties of the level sets of noncontact mappings of Heisenberg groups”, Siberian Adv. Math., 33:1 (2023), 28–38  mathnet  crossref  crossref
    18. M. B. Karmanova, “The coarea formula for vector functions on Carnot groups with sub-Lorentzian structure”, Siberian Math. J., 62:2 (2021), 239–261  mathnet  crossref  crossref  isi  elib
    19. S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025  mathnet  crossref  crossref  isi  elib
    20. Gol'dshtein V., Pchelintsev V., Ukhlov A., “Spectral Stability Estimates of Neumann Divergence Form Elliptic Operators”, Math. Rep., 23:1-2 (2021), 131–147  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:1234
    Full-text PDF :657
    References:119
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025