Processing math: 100%
Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 5, Pages 1088–1101
DOI: https://doi.org/10.17377/smzh.2016.57.514
(Mi smj2809)
 

This article is cited in 5 scientific papers (total in 5 papers)

Composition operators in Orlicz–Sobolev spaces

A. V. Menovshchikovab

a Sobolev Institute of Mathematics, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
Full-text PDF (332 kB) Citations (5)
References:
Abstract: We obtain necessary and sufficient conditions for a homeomorphism of domains in a Euclidean space to generate a bounded embedding operator of the Orlicz–Sobolev spaces defined by a special class of N-functions.
Keywords: composition operator, Orlicz–Sobolev space, N-function.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.B25.31.0029
Russian Foundation for Basic Research 14-01-00552
The author was partially supported by the Government of the Russian Federation (Agreement 14.B25.31.0029) and the Russian Foundation for Basic Research (Grant 14-01-00552).
Received: 28.12.2015
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 5, Pages 849–859
DOI: https://doi.org/10.1134/S0037446616050141
Bibliographic databases:
Document Type: Article
UDC: 517.518+517.54
Language: Russian
Citation: A. V. Menovshchikov, “Composition operators in Orlicz–Sobolev spaces”, Sibirsk. Mat. Zh., 57:5 (2016), 1088–1101; Siberian Math. J., 57:5 (2016), 849–859
Citation in format AMSBIB
\Bibitem{Men16}
\by A.~V.~Menovshchikov
\paper Composition operators in Orlicz--Sobolev spaces
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 5
\pages 1088--1101
\mathnet{http://mi.mathnet.ru/smj2809}
\crossref{https://doi.org/10.17377/smzh.2016.57.514}
\elib{https://elibrary.ru/item.asp?id=27380102}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 5
\pages 849--859
\crossref{https://doi.org/10.1134/S0037446616050141}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386780100014}
\elib{https://elibrary.ru/item.asp?id=27577776}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992390775}
Linking options:
  • https://www.mathnet.ru/eng/smj2809
  • https://www.mathnet.ru/eng/smj/v57/i5/p1088
  • This publication is cited in the following 5 articles:
    1. A. Menovshchikov, A. Ukhlov, “Mappings Generating Embedding Operators in Orlicz-Sobolev Spaces”, J Math Sci, 276:1 (2023), 117  crossref
    2. Alexander Menovschikov, Alexander Ukhlov, “Composition operators on Hardy-Sobolev spaces and BMO-quasiconformal mappings”, J Math Sci, 258:3 (2021), 313  crossref
    3. Alexander Menovschikov, Alexander Ukhlov, “Composition operators on Hardy-Sobolev spaces and BMO-quasiconformal mappings”, UMB, 18:2 (2021), 209  crossref
    4. N. A. Evseev, A. V. Menovshchikov, “The Composition Operator on Mixed-Norm Lebesgue Spaces”, Math. Notes, 105:6 (2019), 812–817  mathnet  crossref  crossref  mathscinet  isi  elib
    5. A. V. Menovshchikov, “Regularity of the inverse of a homeomorphism of a Sobolev–Orlicz space”, Siberian Math. J., 58:4 (2017), 649–662  mathnet  crossref  crossref  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :108
    References:46
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025