Abstract:
Given a homeomorphism φ∈W1M, we determine the conditions that guarantee the belonging of the inverse of φ in some Sobolev–Orlicz space W1F. We also obtain necessary and sufficient conditions under which a homeomorphism of domains in a Euclidean space induces the bounded composition operator of Sobolev–Orlicz spaces defined by a special class of N-functions. Using these results, we establish requirements on a mapping under which the inverse homeomorphism also induces the bounded composition operator of another pair of Sobolev–Orlicz spaces which is defined by the first pair.
Citation:
A. V. Menovshchikov, “Regularity of the inverse of a homeomorphism of a Sobolev–Orlicz space”, Sibirsk. Mat. Zh., 58:4 (2017), 834–850; Siberian Math. J., 58:4 (2017), 649–662
\Bibitem{Men17}
\by A.~V.~Menovshchikov
\paper Regularity of the inverse of a~homeomorphism of a~Sobolev--Orlicz space
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 4
\pages 834--850
\mathnet{http://mi.mathnet.ru/smj2902}
\crossref{https://doi.org/10.17377/smzh.2017.58.411}
\elib{https://elibrary.ru/item.asp?id=29947454}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 4
\pages 649--662
\crossref{https://doi.org/10.1134/S0037446617040115}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408727100011}
\elib{https://elibrary.ru/item.asp?id=31089865}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85028527327}
Linking options:
https://www.mathnet.ru/eng/smj2902
https://www.mathnet.ru/eng/smj/v58/i4/p834
This publication is cited in the following 5 articles:
N. Evseev, A. Menovschikov, “Decomposable operators acting between distinct Lp-direct integrals of Banach spaces”, Anal Math, 2024
A. Menovshchikov, A. Ukhlov, “Mappings Generating Embedding Operators in Orlicz-Sobolev Spaces”, J Math Sci, 276:1 (2023), 117
Alexander Menovschikov, Alexander Ukhlov, “Composition operators on Hardy-Sobolev spaces and BMO-quasiconformal mappings”, J Math Sci, 258:3 (2021), 313
Alexander Menovschikov, Alexander Ukhlov, “Composition operators on Hardy-Sobolev spaces and BMO-quasiconformal mappings”, UMB, 18:2 (2021), 209
A. V. Menovshchikov, “The lower semicontinuity of distortion coefficients of the homeomorphisms inducing bounded composition operators of Sobolev–Orlicz spaces”, Siberian Math. J., 59:2 (2018), 332–340