Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 6, Pages 1057–1083
DOI: https://doi.org/10.1070/IM8373
(Mi im8373)
 

This article is cited in 13 scientific papers (total in 13 papers)

Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series

M. G. Grigoryana, K. A. Navasardyanb

a Physical and Mathematical Faculty of Yerevan State University
b Yerevan State University, Faculty of Informatics and Applied Mathematics
References:
Abstract: We prove the existence of a function g(x)L1[0,1] with monotone decreasing Fourier–Walsh coefficients {ck(g)}k=0 which is universal in Lp[0,1], p1, in the sense of modification with respect to the signs of the Fourier coefficients for the Walsh system. In other words, for every function fLp[0;1] and every ε>0 one can find a function ˜fLp[0;1] such that the measure |{x[0;1]:f(x)=˜f(x)}| is greater than 1ε, the Fourier series of ˜f(x) in the Walsh system converges to ˜f(x) in the Lp[0,1]-norm and |ck(˜f)|=ck(g), kSpec(˜f). We also prove that for every ε, 0<ε<1, one can find a measurable set E[0,1] of measure |E|>1ε and a function gL1[0;1] with 0<ck+1(g)<ck(g), k=0,1,2,, such that for every function fL1[0,1] there is a function ˜fL1[0,1] with the following properties: ˜f coincides with f on E, the Fourier–Walsh series of ˜f(x) converges to ˜f(x) in the norm of L1[0,1] and the absolute values of all terms in the sequence of the Fourier–Walsh coefficients of the newly obtained function satisfy |ck(˜f)|=ck(g), k=0,1,2, .
Keywords: Fourier coefficients, Walsh system, convergence in the L1-norm.
Received: 30.03.2015
Revised: 29.07.2015
Bibliographic databases:
UDC: 517.51
MSC: 26D15, 42C10, 42C20
Language: English
Original paper language: Russian
Citation: M. G. Grigoryan, K. A. Navasardyan, “Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series”, Izv. Math., 80:6 (2016), 1057–1083
Citation in format AMSBIB
\Bibitem{GriNav16}
\by M.~G.~Grigoryan, K.~A.~Navasardyan
\paper Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series
\jour Izv. Math.
\yr 2016
\vol 80
\issue 6
\pages 1057--1083
\mathnet{http://mi.mathnet.ru/eng/im8373}
\crossref{https://doi.org/10.1070/IM8373}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588813}
\zmath{https://zbmath.org/?q=an:1367.42012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80.1057G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393621500003}
\elib{https://elibrary.ru/item.asp?id=27484922}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011708021}
Linking options:
  • https://www.mathnet.ru/eng/im8373
  • https://doi.org/10.1070/IM8373
  • https://www.mathnet.ru/eng/im/v80/i6/p65
  • This publication is cited in the following 13 articles:
    1. M. G. Grigoryan, “On universal (in the sense of signs) Fourier series with respect to the Walsh system”, Sb. Math., 215:6 (2024), 717–742  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. M. G. Grigoryan, A.A. Sargsyan, “On the existence and structure of universal functions for weighted spaces $L^1_\mu [0,1]$”, J Math Sci, 271:5 (2023), 644  crossref  mathscinet
    3. S. A. Episkoposyan, T. M. Grigoryan, L. S. Simonyan, “O Lp-gridi universalnykh funktsiyakh otnositelno obobschennoi sistemy Uolsha”, 2022, 17  crossref
    4. S. A. Episkoposyan, T. M. Grigoryan, L. S. Simonyan, “On the
      $$L^{p}$$
      -Greedy Universal Functions with Respect to the Generalized Walsh System”, J. Contemp. Mathemat. Anal., 57:6 (2022), 332  crossref
    5. M. G. Grigoryan, L. N. Galoyan, “Functions universal with respect to the trigonometric system”, Izv. Math., 85:2 (2021), 241–261  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    6. M. G. Grigoryan, “Functions with universal Fourier-Walsh series”, Sb. Math., 211:6 (2020), 850–874  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. A. Sargsyan, “On the existence of universal functions with respect to the double walsh system for classes of integrable functions”, Colloq. Math., 161:1 (2020), 111–129  crossref  mathscinet  zmath  isi
    8. Sargsyan A. Grigoryan M., “Universal Functions With Respect to the Double Walsh System For Classes of Integrable Functions”, Anal. Math., 46:2 (2020), 367–392  crossref  mathscinet  isi
    9. M. Grigoryan, A. Sargsyan, “On the structure of universal functions for classes l-p[0,1)(2), P is an element of (0,1), with respect to the double walsh system”, Banach J. Math. Anal., 13:3 (2019), 647–674  crossref  mathscinet  isi
    10. A. A. Sargsyan, “On the structure of functions, universal for weighted spaces $L^p_{\mu}[0,1]$, $p\geq 1$”, J. Contemp. Math. Anal.-Armen. Aca., 54:3 (2019), 163–175  crossref  mathscinet  zmath  isi  scopus
    11. A. Sargsyan, M. Grigoryan, “Universal functions for classes l-p[0,1)2, P is an element of(0,1), with respect to the double walsh system”, Positivity, 23:5 (2019), 1261–1280  crossref  mathscinet  isi
    12. M. G. Grigoryan, A. A. Sargsyan, “The structure of universal functions for $L^p$-spaces, $p\in(0,1)$”, Sb. Math., 209:1 (2018), 35–55  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. M. G. Grigoryan, “On the absolute convergence of Fourier–Haar series in the metric of $L^p(0,1)$, $0<p<1$”, J. Math. Sci. (N. Y.), 243:6 (2019), 844–858  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:551
    Russian version PDF:116
    English version PDF:26
    References:86
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025