Abstract:
We prove the existence of a function g(x)∈L1[0,1] with monotone decreasing Fourier–Walsh coefficients {ck(g)}∞k=0↓ which is universal in Lp[0,1], p⩾1, in the sense of modification with respect to the signs of the Fourier coefficients for the Walsh system. In other words, for every function f∈Lp[0;1] and every ε>0 one can find a function ˜f∈Lp[0;1] such that the measure |{x∈[0;1]:f(x)=˜f(x)}| is greater than 1−ε, the Fourier series of ˜f(x) in the Walsh system converges to ˜f(x) in the Lp[0,1]-norm and |ck(˜f)|=ck(g), k∈Spec(˜f). We also prove that for every ε, 0<ε<1, one can find a measurable set E⊂[0,1] of measure |E|>1−ε and a function g∈L1[0;1] with 0<ck+1(g)<ck(g), k=0,1,2,…, such that for every function f∈L1[0,1] there is a function ˜f∈L1[0,1] with the following properties: ˜f coincides with f on E, the Fourier–Walsh series of ˜f(x) converges to ˜f(x) in the norm of L1[0,1] and the absolute values of all terms in the sequence of the Fourier–Walsh coefficients of the newly obtained function satisfy |ck(˜f)|=ck(g), k=0,1,2,… .
Keywords:
Fourier coefficients, Walsh system, convergence in the L1-norm.
Citation:
M. G. Grigoryan, K. A. Navasardyan, “Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series”, Izv. Math., 80:6 (2016), 1057–1083
\Bibitem{GriNav16}
\by M.~G.~Grigoryan, K.~A.~Navasardyan
\paper Universal functions in `correction' problems guaranteeing the convergence of Fourier--Walsh series
\jour Izv. Math.
\yr 2016
\vol 80
\issue 6
\pages 1057--1083
\mathnet{http://mi.mathnet.ru/eng/im8373}
\crossref{https://doi.org/10.1070/IM8373}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588813}
\zmath{https://zbmath.org/?q=an:1367.42012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80.1057G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393621500003}
\elib{https://elibrary.ru/item.asp?id=27484922}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011708021}
Linking options:
https://www.mathnet.ru/eng/im8373
https://doi.org/10.1070/IM8373
https://www.mathnet.ru/eng/im/v80/i6/p65
This publication is cited in the following 13 articles:
M. G. Grigoryan, “On universal (in the sense of signs) Fourier series with respect to the Walsh system”, Sb. Math., 215:6 (2024), 717–742
M. G. Grigoryan, A.A. Sargsyan, “On the existence and structure of universal functions for weighted spaces $L^1_\mu [0,1]$”, J Math Sci, 271:5 (2023), 644
S. A. Episkoposyan, T. M. Grigoryan, L. S. Simonyan, “O Lp-gridi universalnykh funktsiyakh otnositelno obobschennoi sistemy Uolsha”, 2022, 17
S. A. Episkoposyan, T. M. Grigoryan, L. S. Simonyan, “On the $$L^{p}$$ -Greedy Universal Functions with Respect to the Generalized Walsh System”, J. Contemp. Mathemat. Anal., 57:6 (2022), 332
M. G. Grigoryan, L. N. Galoyan, “Functions universal with respect to the trigonometric system”, Izv. Math., 85:2 (2021), 241–261
M. G. Grigoryan, “Functions with universal Fourier-Walsh series”, Sb. Math., 211:6 (2020), 850–874
A. Sargsyan, “On the existence of universal functions with respect to the double walsh system for classes of integrable functions”, Colloq. Math., 161:1 (2020), 111–129
Sargsyan A. Grigoryan M., “Universal Functions With Respect to the Double Walsh System For Classes of Integrable Functions”, Anal. Math., 46:2 (2020), 367–392
M. Grigoryan, A. Sargsyan, “On the structure of universal functions for classes l-p[0,1)(2), P is an element of (0,1), with respect to the double walsh system”, Banach J. Math. Anal., 13:3 (2019), 647–674
A. A. Sargsyan, “On the structure of functions, universal for weighted spaces $L^p_{\mu}[0,1]$, $p\geq 1$”, J. Contemp. Math. Anal.-Armen. Aca., 54:3 (2019), 163–175
A. Sargsyan, M. Grigoryan, “Universal functions for classes l-p[0,1)2, P is an element of(0,1), with respect to the double walsh system”, Positivity, 23:5 (2019), 1261–1280
M. G. Grigoryan, A. A. Sargsyan, “The structure of universal functions for $L^p$-spaces, $p\in(0,1)$”, Sb. Math., 209:1 (2018), 35–55
M. G. Grigoryan, “On the absolute convergence of Fourier–Haar series in the metric of $L^p(0,1)$, $0<p<1$”, J. Math. Sci. (N. Y.), 243:6 (2019), 844–858