Processing math: 100%
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 1, Pages 35–55
DOI: https://doi.org/10.1070/SM8806
(Mi sm8806)
 

This article is cited in 15 scientific papers (total in 15 papers)

The structure of universal functions for Lp-spaces, p(0,1)

M. G. Grigoryana, A. A. Sargsyanb

a Yerevan State University, Armenia
b Russian-Armenian (Slavonic) State University, Yerevan, Armenia
References:
Abstract: The paper sheds light on the structure of functions which are universal for Lp-spaces, p(0,1), with respect to the signs of Fourier-Walsh coefficients. It is shown that there exists a measurable set E[0,1], whose measure is arbitrarily close to 1, such that by an appropriate change of values of any function fL1[0,1] outside E a function f~L1[0,1] can be obtained that is universal for each Lp[0,1]-space, p(0,1), with respect to the signs of Fourier-Walsh coefficients.
Bibliography: 28 titles.
Keywords: universal function, Fourier coefficients, Walsh system, convergence in a metric.
Received: 27.08.2016 and 27.01.2017
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 42C10, 43A15
Language: English
Original paper language: Russian
Citation: M. G. Grigoryan, A. A. Sargsyan, “The structure of universal functions for Lp-spaces, p(0,1)”, Sb. Math., 209:1 (2018), 35–55
Citation in format AMSBIB
\Bibitem{GriSar18}
\by M.~G.~Grigoryan, A.~A.~Sargsyan
\paper The structure of universal functions for $L^p$-spaces, $p\in(0,1)$
\jour Sb. Math.
\yr 2018
\vol 209
\issue 1
\pages 35--55
\mathnet{http://mi.mathnet.ru/eng/sm8806}
\crossref{https://doi.org/10.1070/SM8806}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3740295}
\zmath{https://zbmath.org/?q=an:1392.42027}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209...35G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000428795800002}
\elib{https://elibrary.ru/item.asp?id=30762118}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045635016}
Linking options:
  • https://www.mathnet.ru/eng/sm8806
  • https://doi.org/10.1070/SM8806
  • https://www.mathnet.ru/eng/sm/v209/i1/p37
  • This publication is cited in the following 15 articles:
    1. Sergo A. Episkoposian, Martin G. Grigorian, Tigran M. Grigorian, “On the universal pair with respect to the generalized Walsh system”, Adv. Oper. Theory, 9:1 (2024)  crossref  mathscinet
    2. M. G. Grigoryan, “On universal (in the sense of signs) Fourier series with respect to the Walsh system”, Sb. Math., 215:6 (2024), 717–742  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. M. G. Grigoryan, L. N. Galoyan, “Functions universal with respect to the trigonometric system”, Izv. Math., 85:2 (2021), 241–261  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    4. M. G. Grigoryan, “Ob universalnykh ryadakh Fure—Uolsha”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g.  Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 200, VINITI RAN, M., 2021, 45–57  mathnet  crossref
    5. M. G. Grigoryan, “On the existence and structure of universal functions”, Dokl. Math., 103:1 (2021), 23–25  crossref  mathscinet  isi
    6. M. G. Grigoryan, “Functions with universal Fourier-Walsh series”, Sb. Math., 211:6 (2020), 850–874  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. M. G. Grigoryan, “Universal Fourier Series”, Math. Notes, 108:2 (2020), 282–285  mathnet  crossref  crossref  mathscinet  isi  elib
    8. A. Sargsyan, “On the existence of universal functions with respect to the double walsh system for classes of integrable functions”, Colloq. Math., 161:1 (2020), 111–129  crossref  mathscinet  zmath  isi  scopus
    9. Sargsyan A., Grigoryan M., “Universal Functions With Respect to the Double Walsh System For Classes of Integrable Functions”, Anal. Math., 46:2 (2020), 367–392  crossref  mathscinet  isi
    10. Grigoryan M.G., “Functions, Universal With Respect to the Classical Systems”, Adv. Oper. Theory, 5:4 (2020), 1414–1433  crossref  mathscinet  isi  scopus
    11. M. G. Grigoryan, “Functions universal with respect to the walsh system”, J. Contemp. Math. Anal.-Armen. Aca., 55:6 (2020), 376–388  crossref  mathscinet  zmath  isi
    12. M. Grigoryan, A. Sargsyan, “On the structure of universal functions for classes Lp[0,1)2 , p(0,1) , with respect to the double Walsh system”, Banach J. Math. Anal., 13:3 (2019), 647–674  crossref  mathscinet  zmath  isi
    13. A. A. Sargsyan, “On the structure of functions universal for the weighted spaces Lpμ[0,1] , p>1”, J. Contemp. Math. Anal., 54:3 (2019), 163–175  crossref  mathscinet  zmath  isi  scopus
    14. M. Grigoryan, L. Galoyan, “On Fourier series that are universal modulo signs”, Studia Math., 249:2 (2019), 215–231  crossref  mathscinet  zmath  isi
    15. A. Sargsyan, M. Grigoryan, “Universal functions for classes Lp[0,1)2 , p(0,1) , with respect to the double Walsh system”, Positivity, 23:5 (2019), 1261–1280  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:704
    Russian version PDF:80
    English version PDF:29
    References:69
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025