Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 6, Pages 850–874
DOI: https://doi.org/10.1070/SM9302
(Mi sm9302)
 

This article is cited in 13 scientific papers (total in 13 papers)

Functions with universal Fourier-Walsh series

M. G. Grigoryan

Faculty of Physics, Yerevan State University, Yerevan, Republic of Armenia
References:
Abstract: We prove results on the existence of functions whose Fourier series in the Walsh system are universal in some sense or other in the function classes Lp[0,1], 0<p<1, and M[0,1]. We also give a description of the structure of these functions.
Bibliography: 30 titles.
Keywords: universal functions, Fourier-Walsh series, convergence, almost everywhere convergence.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 18T-1A148
This research was carried out with the financial support of the State Committee on Science of the Ministry of Education and Science of the Republic of Armenia (project no. 18T-1A148).
Received: 07.07.2019 and 08.12.2019
Bibliographic databases:
Document Type: Article
UDC: 517.538
PACS: УДК 517.538
MSC: 42C10, 43A15
Language: English
Original paper language: Russian
Citation: M. G. Grigoryan, “Functions with universal Fourier-Walsh series”, Sb. Math., 211:6 (2020), 850–874
Citation in format AMSBIB
\Bibitem{Gri20}
\by M.~G.~Grigoryan
\paper Functions with universal Fourier-Walsh series
\jour Sb. Math.
\yr 2020
\vol 211
\issue 6
\pages 850--874
\mathnet{http://mi.mathnet.ru/eng/sm9302}
\crossref{https://doi.org/10.1070/SM9302}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4104777}
\zmath{https://zbmath.org/?q=an:1447.42031}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..850G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000564137700001}
\elib{https://elibrary.ru/item.asp?id=45172678}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094980669}
Linking options:
  • https://www.mathnet.ru/eng/sm9302
  • https://doi.org/10.1070/SM9302
  • https://www.mathnet.ru/eng/sm/v211/i6/p107
  • This publication is cited in the following 13 articles:
    1. Sergo A. Episkoposian, Martin G. Grigorian, Tigran M. Grigorian, “On the universal pair with respect to the generalized Walsh system”, Adv. Oper. Theory, 9:1 (2024)  crossref  mathscinet
    2. M. G. Grigoryan, T. M. Grigoryan, L. S. Simonyan, Trends in Mathematics, 3, Extended Abstracts 2021/2022, 2024, 117  crossref
    3. L. N. Galoyan, M. G. Grigoryan, “Functions Almost Universal in the Sense of Signs with Respect to the Trigonometric System and the Walsh System”, Math. Notes, 115:6 (2024), 1030–1034  mathnet  crossref  crossref  mathscinet
    4. M. G. Grigoryan, “On universal (in the sense of signs) Fourier series with respect to the Walsh system”, Sb. Math., 215:6 (2024), 717–742  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. S. A. Sargsyan, L. N. Galoyan, “On the uniform convergence of spherical partial sums of Fourier series by the double Walsh system”, J. Contemp. Mathemat. Anal., 58:5 (2023), 370  crossref  mathscinet
    6. M. G. Grigoryan, A. A. Sargsyan, “On the existence and structure of universal functions for weighted spaces Lμ1[0,1]”, J. Math. Sci., 271:5 (2023), 644  crossref  mathscinet
    7. M. G. Grigoryan, “On universal Fourier series in the Walsh system”, Siberian Math. J., 63:5 (2022), 868–882  mathnet  crossref  crossref
    8. M. G. Grigoryan, “On Almost Universal Double Fourier Series”, Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S129–S139  mathnet  crossref  crossref  mathscinet  isi  elib
    9. M. G. Grigoryan, “On Fourier Series Almost Universal in the Class of Measurable Functions”, J. Contemp. Math. Anal., Armen. Acad. Sci., 57:4 (2022), 215–221  crossref  crossref  mathscinet  mathscinet  zmath
    10. M. G. Grigoryan, “On unconditional and absolute convergence of the Haar series in the metric of Lp[0,1] with 0<p<1”, Siberian Math. J., 62:4 (2021), 607–615  mathnet  crossref  crossref  isi  elib
    11. M. G. Grigoryan, “On the existence and structure of universal functions”, Dokl. Math., 103:1 (2021), 23–25  mathnet  crossref  crossref  zmath  elib
    12. M. G. Grigoryan, “Universal Fourier Series”, Math. Notes, 108:2 (2020), 282–285  mathnet  crossref  crossref  mathscinet  isi  elib
    13. M. G. Grigoryan, “Functions universal with respect to the Walsh system”, J. Contemp. Math. Anal., Armen. Acad. Sci., 55:6 (2020), 376–388  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:458
    Russian version PDF:82
    English version PDF:27
    References:53
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025