Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 2, Pages 241–261
DOI: https://doi.org/10.1070/IM8964
(Mi im8964)
 

This article is cited in 8 scientific papers (total in 8 papers)

Functions universal with respect to the trigonometric system

M. G. Grigoryan, L. N. Galoyan

Yerevan State University
References:
Abstract: We construct an integrable function whose Fourier series possesses the following property. After an appropriate choice of signs of the coefficients of this series, the partial sums of the resulting series are dense in Lp, p(0,1).
Keywords: universal function, universal trigonometric series, Fourier series, convergence in Lp.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 18T-1A148
This research was carried out with the financial support of the State Committee on Science MSE RA under grant no. 18T-1A148.
Received: 21.08.2019
Revised: 15.04.2020
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: 42A16, 43A15
Language: English
Original paper language: Russian
Citation: M. G. Grigoryan, L. N. Galoyan, “Functions universal with respect to the trigonometric system”, Izv. Math., 85:2 (2021), 241–261
Citation in format AMSBIB
\Bibitem{GriGal21}
\by M.~G.~Grigoryan, L.~N.~Galoyan
\paper Functions universal with respect to the trigonometric system
\jour Izv. Math.
\yr 2021
\vol 85
\issue 2
\pages 241--261
\mathnet{http://mi.mathnet.ru/eng/im8964}
\crossref{https://doi.org/10.1070/IM8964}
\zmath{https://zbmath.org/?q=an:1464.42003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85..241G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000701472000001}
\elib{https://elibrary.ru/item.asp?id=46042032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85105046956}
Linking options:
  • https://www.mathnet.ru/eng/im8964
  • https://doi.org/10.1070/IM8964
  • https://www.mathnet.ru/eng/im/v85/i2/p73
  • This publication is cited in the following 8 articles:
    1. L. N. Galoyan, M. G. Grigoryan, “Functions Almost Universal in the Sense of Signs with Respect to the Trigonometric System and the Walsh System”, Math. Notes, 115:6 (2024), 1030–1034  mathnet  crossref  crossref  mathscinet
    2. M. G. Grigoryan, “On universal (in the sense of signs) Fourier series with respect to the Walsh system”, Sb. Math., 215:6 (2024), 717–742  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. M. G. Grigoryan, S. V. Konyagin, “On Fourier series in the multiple trigonometric system”, Russian Math. Surveys, 78:4 (2023), 782–784  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. S. A. Sargsyan, L. N. Galoyan, “On the uniform convergence of spherical partial sums of Fourier series by the double Walsh system”, J. Contemp. Mathemat. Anal., 58:5 (2023), 370  crossref  mathscinet
    5. M. G. Grigoryan, A. A. Sargsyan, “On the existence and structure of universal functions for weighted spaces Lμ1[0,1]”, J. Math. Sci., 271:5 (2023), 644  crossref  mathscinet
    6. M. G. Grigoryan, “On universal Fourier series in the Walsh system”, Siberian Math. J., 63:5 (2022), 868–882  mathnet  crossref  crossref
    7. M. G. Grigoryan, “On Almost Universal Double Fourier Series”, Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S129–S139  mathnet  crossref  crossref  mathscinet  isi  elib
    8. M. G. Grigoryan, “On Fourier series almost universal in the class of measurable functions”, J. Contemp. Mathemat. Anal., 57:4 (2022), 215–221  crossref  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:512
    Russian version PDF:125
    English version PDF:54
    Russian version HTML:210
    References:64
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025