Processing math: 100%
Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2002, Volume 36, Issue 4, Pages 18–34
DOI: https://doi.org/10.4213/faa216
(Mi faa216)
 

This article is cited in 35 scientific papers (total in 36 papers)

Polynomial Lie Algebras

V. M. Buchstabera, D. V. Leikinb

a Steklov Mathematical Institute, Russian Academy of Sciences
b Institute of Magnetism, National Academy of Sciences of Ukraine
References:
Abstract: We introduce and study a special class of infinite-dimensional Lie algebras that are finite-dimensional modules over a ring of polynomials. The Lie algebras of this class are said to be polynomial. Some classification results are obtained. An associative co-algebra structure on the rings k[x1,,xn]/(f1,,fn) is introduced and, on its basis, an explicit expression for convolution matrices of invariants for isolated singularities of functions is found. The structure polynomials of moving frames defined by convolution matrices are constructed for simple singularities of the types A, B, C, D, and E6.
Keywords: Lie algebra, moving frame, convolution of invariants, co-algebra.
Received: 05.05.2002
English version:
Functional Analysis and Its Applications, 2002, Volume 36, Issue 4, Pages 267–280
DOI: https://doi.org/10.1023/A:1021757609372
Bibliographic databases:
Document Type: Article
UDC: 512.554.32+517
Language: Russian
Citation: V. M. Buchstaber, D. V. Leikin, “Polynomial Lie Algebras”, Funktsional. Anal. i Prilozhen., 36:4 (2002), 18–34; Funct. Anal. Appl., 36:4 (2002), 267–280
Citation in format AMSBIB
\Bibitem{BucLei02}
\by V.~M.~Buchstaber, D.~V.~Leikin
\paper Polynomial Lie Algebras
\jour Funktsional. Anal. i Prilozhen.
\yr 2002
\vol 36
\issue 4
\pages 18--34
\mathnet{http://mi.mathnet.ru/faa216}
\crossref{https://doi.org/10.4213/faa216}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1958992}
\zmath{https://zbmath.org/?q=an:1027.17020}
\transl
\jour Funct. Anal. Appl.
\yr 2002
\vol 36
\issue 4
\pages 267--280
\crossref{https://doi.org/10.1023/A:1021757609372}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000180858500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036933092}
Linking options:
  • https://www.mathnet.ru/eng/faa216
  • https://doi.org/10.4213/faa216
  • https://www.mathnet.ru/eng/faa/v36/i4/p18
  • This publication is cited in the following 36 articles:
    1. Julia Bernatska, “Abelian Function Fields on Jacobian Varieties”, Axioms, 14:2 (2025), 90  crossref
    2. J. Chris Eilbeck, John Gibbons, Yoshihiro Ônishi, Seidai Yasuda, “Theory of heat equations for sigma functions”, Glasgow Math. J., 2025, 1  crossref
    3. V. M. Buchstaber, E. Yu. Bunkova, “Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods”, Proc. Steklov Inst. Math., 325 (2024), 60–73  mathnet  crossref  crossref  zmath  isi
    4. E. Yu. Bunkova, V. M. Buchstaber, “Explicit Formulas for Differentiation of Hyperelliptic Functions”, Math. Notes, 114:6 (2023), 1151–1162  mathnet  crossref  crossref  mathscinet
    5. Julia Bernatska, Dmitry Leykin, “Solution of the Jacobi inversion problem on non-hyperelliptic curves”, Lett Math Phys, 113:5 (2023)  crossref
    6. V. M. Buchstaber, E. Yu. Bunkova, “Hyperelliptic Sigma Functions and Adler–Moser Polynomials”, Funct. Anal. Appl., 55:3 (2021), 179–197  mathnet  crossref  crossref  isi
    7. D. V. Millionshchikov, S. V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69  mathnet  crossref  isi
    8. V. V. Gorbatsevich, “Polinomialnye realizatsii konechnomernykh algebr Li”, Funkts. analiz i ego pril., 54:2 (2020), 25–34  mathnet  crossref  mathscinet
    9. V. M. Buchstaber, E. Yu. Bunkova, “Lie Algebras of Heat Operators in a Nonholonomic Frame”, Math. Notes, 108:1 (2020), 15–28  mathnet  crossref  crossref  mathscinet  isi  elib
    10. V. M. Buchstaber, E. Yu. Bunkova, “Sigma Functions and Lie Algebras of Schrödinger Operators”, Funct. Anal. Appl., 54:4 (2020), 229–240  mathnet  crossref  crossref  mathscinet  isi  elib
    11. Buchstaber V.M. Enolski V.Z. Leykin D.V., “SIGMA-Functions: Old and New Results”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 2, London Mathematical Society Lecture Note Series, 459, ed. Donagi R. Shaska T., Cambridge Univ Press, 2020, 175–214  mathscinet  isi
    12. V. V. Gorbatsevich, “Polynomial Realizations of Finite-Dimensional Lie Algebras”, Funct Anal Its Appl, 54:2 (2020), 93  crossref
    13. Bernatska J. Leykin D., “On Degenerate SIGMA-Functions in Genus 2”, Glasg. Math. J., 61:1 (2019), 169–193  crossref  mathscinet  zmath  isi  scopus
    14. Bunkova E.Yu., “On the Problem of Differentiation of Hyperelliptic Functions”, Eur. J. Math., 5:3, SI (2019), 712–719  crossref  mathscinet  isi
    15. Bunkova E.Yu., “Differentiation of Genus 3 Hyperelliptic Functions”, Eur. J. Math., 4:1, 1, SI (2018), 93–112  crossref  mathscinet  zmath  isi  scopus
    16. D. V. Millionshchikov, “Polynomial Lie algebras and growth of their finitely generated Lie subalgebras”, Proc. Steklov Inst. Math., 302 (2018), 298–314  mathnet  crossref  crossref  mathscinet  isi  elib
    17. V. M. Buchstaber, A. V. Mikhailov, “Infinite-Dimensional Lie Algebras Determined by the Space of Symmetric Squares of Hyperelliptic Curves”, Funct. Anal. Appl., 51:1 (2017), 2–21  mathnet  crossref  crossref  mathscinet  isi  elib
    18. V. M. Buchstaber, “Polynomial Lie algebras and the Zelmanov–Shalev theorem”, Russian Math. Surveys, 72:6 (2017), 1168–1170  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    19. Makedonskyi I., “on Noncommutative Bases of Free Modules of Derivations Over Polynomial Rings”, Commun. Algebr., 44:1 (2016), 11–25  crossref  mathscinet  zmath  isi  elib  scopus
    20. V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:1235
    Full-text PDF :487
    References:106
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025