Abstract:
We introduce and study a special class of infinite-dimensional Lie algebras that are finite-dimensional modules over a ring of polynomials. The Lie algebras of this class are said to be polynomial. Some classification results are obtained. An associative co-algebra structure on the rings k[x1,…,xn]/(f1,…,fn) is introduced and, on its basis, an explicit expression for convolution matrices of invariants for isolated singularities of functions is found. The structure polynomials of moving frames defined by convolution matrices are constructed for simple singularities of the types A, B, C, D, and E6.
Keywords:
Lie algebra, moving frame, convolution of invariants, co-algebra.
Citation:
V. M. Buchstaber, D. V. Leikin, “Polynomial Lie Algebras”, Funktsional. Anal. i Prilozhen., 36:4 (2002), 18–34; Funct. Anal. Appl., 36:4 (2002), 267–280
This publication is cited in the following 36 articles:
Julia Bernatska, “Abelian Function Fields on Jacobian Varieties”, Axioms, 14:2 (2025), 90
J. Chris Eilbeck, John Gibbons, Yoshihiro Ônishi, Seidai Yasuda, “Theory of heat equations for sigma functions”, Glasgow Math. J., 2025, 1
V. M. Buchstaber, E. Yu. Bunkova, “Formulas for Differentiating Hyperelliptic Functions with Respect to Parameters and Periods”, Proc. Steklov Inst. Math., 325 (2024), 60–73
E. Yu. Bunkova, V. M. Buchstaber, “Explicit Formulas for Differentiation of Hyperelliptic Functions”, Math. Notes, 114:6 (2023), 1151–1162
Julia Bernatska, Dmitry Leykin, “Solution of the Jacobi inversion problem on non-hyperelliptic curves”, Lett Math Phys, 113:5 (2023)
V. M. Buchstaber, E. Yu. Bunkova, “Hyperelliptic Sigma Functions and Adler–Moser Polynomials”, Funct. Anal. Appl., 55:3 (2021), 179–197
D. V. Millionshchikov, S. V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69
V. V. Gorbatsevich, “Polinomialnye realizatsii konechnomernykh algebr Li”, Funkts. analiz i ego pril., 54:2 (2020), 25–34
V. M. Buchstaber, E. Yu. Bunkova, “Lie Algebras of Heat Operators in a Nonholonomic Frame”, Math. Notes, 108:1 (2020), 15–28
V. M. Buchstaber, E. Yu. Bunkova, “Sigma Functions and Lie Algebras of Schrödinger Operators”, Funct. Anal. Appl., 54:4 (2020), 229–240
Buchstaber V.M. Enolski V.Z. Leykin D.V., “SIGMA-Functions: Old and New Results”, Integrable Systems and Algebraic Geometry: a Celebration of Emma Previato'S 65Th Birthday, Vol 2, London Mathematical Society Lecture Note Series, 459, ed. Donagi R. Shaska T., Cambridge Univ Press, 2020, 175–214
V. V. Gorbatsevich, “Polynomial Realizations of Finite-Dimensional Lie Algebras”, Funct Anal Its Appl, 54:2 (2020), 93
Bernatska J. Leykin D., “On Degenerate SIGMA-Functions in Genus 2”, Glasg. Math. J., 61:1 (2019), 169–193
Bunkova E.Yu., “On the Problem of Differentiation of Hyperelliptic Functions”, Eur. J. Math., 5:3, SI (2019), 712–719
Bunkova E.Yu., “Differentiation of Genus 3 Hyperelliptic Functions”, Eur. J. Math., 4:1, 1, SI (2018), 93–112
D. V. Millionshchikov, “Polynomial Lie algebras and growth of their finitely generated Lie subalgebras”, Proc. Steklov Inst. Math., 302 (2018), 298–314
V. M. Buchstaber, A. V. Mikhailov, “Infinite-Dimensional Lie Algebras Determined by the Space of Symmetric Squares of Hyperelliptic Curves”, Funct. Anal. Appl., 51:1 (2017), 2–21
V. M. Buchstaber, “Polynomial Lie algebras and the Zelmanov–Shalev theorem”, Russian Math. Surveys, 72:6 (2017), 1168–1170
Makedonskyi I., “on Noncommutative Bases of Free Modules of Derivations Over Polynomial Rings”, Commun. Algebr., 44:1 (2016), 11–25
V. M. Buchstaber, “Polynomial dynamical systems and the Korteweg–de Vries equation”, Proc. Steklov Inst. Math., 294 (2016), 176–200