Доклады Академии наук
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Докл. РАН:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Доклады Академии наук, 1984, том 279, номер 1, страницы 20–24 (Mi dan9374)  

Эта публикация цитируется в 60 научных статьях (всего в 61 статьях)

МАТЕМАТИКА

Конечнозонные двумерные потенциальные операторы Шредингера. Явные формулы и эволюционные уравнения

А. П. Веселов, С. П. Новиков

Институт теоретической физики им. Л. Д. Ландау АН СССР, Черноголовка Московской обл.
Поступило: 06.06.1984
Реферативные базы данных:
Тип публикации: Статья
УДК: 517.984+512.77
Образец цитирования: А. П. Веселов, С. П. Новиков, “Конечнозонные двумерные потенциальные операторы Шредингера. Явные формулы и эволюционные уравнения”, Докл. АН СССР, 279:1 (1984), 20–24
Цитирование в формате AMSBIB
\RBibitem{VesNov84}
\by А.~П.~Веселов, С.~П.~Новиков
\paper Конечнозонные двумерные потенциальные операторы Шредингера. Явные формулы и эволюционные уравнения
\jour Докл. АН СССР
\yr 1984
\vol 279
\issue 1
\pages 20--24
\mathnet{http://mi.mathnet.ru/dan9374}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=0769198}
\zmath{https://zbmath.org/?q=an:0613.35020}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/dan9374
  • https://www.mathnet.ru/rus/dan/v279/i1/p20
  • Эта публикация цитируется в следующих 61 статьяx:
    1. У. Салим, Х. Сарфраз, Я. Ханиф, “Динамика кинк-солитонных решений (2+1)-мерного уравнения синус-Гордон”, ТМФ, 210:1 (2022), 80–98  mathnet  crossref  mathscinet  adsnasa; U. Saleem, H. Sarfraz, Ya. Hanif, “Dynamics of kink-soliton solutions of the (2+1)-dimensional sine-Gordon equation”, Theoret. and Math. Phys., 210:1 (2022), 68–84  crossref  isi
    2. П. Г. Гриневич, П. М. Сантини, “Конечнозонный подход в периодической задаче Коши для (2+1)-мерных аномальных волн фокусирующего уравнения Дэви–Стюартсона 2”, УМН, 77:6(468) (2022), 77–108  mathnet  crossref  mathscinet  zmath  adsnasa; P. G. Grinevich, P. M. Santini, “The finite-gap method and the periodic Cauchy problem for (2+1)-dimensional anomalous waves for the focusing Davey–Stewartson 2 equation”, Russian Math. Surveys, 77:6 (2022), 1029–1059  crossref  isi
    3. А. Ю. Орлов, “Замечания о соответствии между иерархиями КП и BКП”, ТМФ, 208:3 (2021), 416–439  mathnet  crossref  adsnasa; A. Yu. Orlov, “Notes about the KP/BKP correspondence”, Theoret. and Math. Phys., 208:3 (2021), 1207–1227  crossref  isi  elib
    4. А. К. Погребков, “Коммутаторные тождества и интегрируемые иерархии”, ТМФ, 205:3 (2020), 391–399  mathnet  crossref  mathscinet  adsnasa; A. K. Pogrebkov, “Commutator identities and integrable hierarchies”, Theoret. and Math. Phys., 205:3 (2020), 1585–1592  crossref  isi  elib
    5. А. В. Ильина, И. М. Кричевер, Н. А. Некрасов, “Двумерные периодические операторы Шредингера, интегрируемые на «собственном» уровне энергии”, Функц. анализ и его прил., 53:1 (2019), 31–48  mathnet  crossref  mathscinet  elib
    6. А. Д. Агальцов, Р. Г. Новиков, “Примеры решения обратной задачи рассеяния и уравнений иерархии Веселова–Новикова по данным рассеяния точечных потенциалов”, УМН, 74:3(447) (2019), 3–16  mathnet  crossref  mathscinet  zmath  adsnasa  elib; A. D. Agaltsov, R. G. Novikov, “Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials”, Russian Math. Surveys, 74:3 (2019), 373–386  crossref  isi
    7. Р. Г. Новиков, И. А. Тайманов, “Преобразования Дарбу–Мутара и операторы Пуанкаре–Стеклова”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 302, МАИК «Наука/Интерпериодика», М., 2018, 334–342  mathnet  crossref  mathscinet  elib; R. G. Novikov, I. A. Taimanov, “Darboux–Moutard transformations and Poincaré–Steklov operators”, Proc. Steklov Inst. Math., 302 (2018), 315–324  crossref  isi
    8. П. Г. Гриневич, С. П. Новиков, “Сингулярные солитоны и спектральная мероморфность”, УМН, 72:6(438) (2017), 113–138  mathnet  crossref  mathscinet  zmath  adsnasa  elib; P. G. Grinevich, S. P. Novikov, “Singular solitons and spectral meromorphy”, Russian Math. Surveys, 72:6 (2017), 1083–1107  crossref  isi
    9. В. Э. Адлер, Ю. Ю. Берест, В. М. Бухштабер, П. Г. Гриневич, Б. А. Дубровин, И. М. Кричевер, С. П. Новиков, А. Н. Сергеев, М. В. Фейгин, Д. Фельдер, Е. В. Ферапонтов, О. А. Чалых, П. И. Этингоф, “Александр Петрович Веселов (к шестидесятилетию со дня рождения)”, УМН, 71:6(432) (2016), 172–188  mathnet  crossref  mathscinet  zmath  adsnasa  elib; V. E. Adler, Yu. Yu. Berest, V. M. Buchstaber, P. G. Grinevich, B. A. Dubrovin, I. M. Krichever, S. P. Novikov, A. N. Sergeev, M. V. Feigin, J. Felder, E. V. Ferapontov, O. A. Chalykh, P. I. Etingof, “Alexander Petrovich Veselov (on his 60th birthday)”, Russian Math. Surveys, 71:6 (2016), 1159–1176  crossref  isi
    10. И. А. Тайманов, “О первых интегралах геодезических потоков на двумерном торе”, Современные проблемы механики, Сборник статей, Труды МИАН, 295, МАИК «Наука/Интерпериодика», М., 2016, 241–260  mathnet  crossref  mathscinet  elib; I. A. Taimanov, “On first integrals of geodesic flows on a two-torus”, Proc. Steklov Inst. Math., 295 (2016), 225–242  crossref  isi  elib
    11. И. А. Тайманов, “Разрушающиеся решения модифицированного уравнения Веселова–Новикова и минимальные поверхности”, ТМФ, 182:2 (2015), 213–222  mathnet  crossref  mathscinet  adsnasa  elib; I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces”, Theoret. and Math. Phys., 182:2 (2015), 173–181  crossref  isi
    12. П. Г. Гриневич, А. Е. Миронов, С. П. Новиков, “О нерелятивистском двумерном чисто магнитном суперсимметричном операторе Паули”, УМН, 70:2(422) (2015), 109–140  mathnet  crossref  mathscinet  zmath  adsnasa  elib; P. G. Grinevich, A. E. Mironov, S. P. Novikov, “On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator”, Russian Math. Surveys, 70:2 (2015), 299–329  crossref  isi  elib
    13. Б. О. Василевский, “Функция Грина дискретного конечнозонного при одной энергии двумерного оператора Шрёдингера на квад-графе”, Матем. заметки, 98:1 (2015), 27–43  mathnet  crossref  mathscinet  elib; B. O. Vasilevskii, “The Green Function of the Discrete Finite-Gap One-Energy Two-Dimensional Schrödinger Operator on the Quad Graph”, Math. Notes, 98:1 (2015), 38–52  crossref  isi
    14. Б. О. Василевский, “Достаточное условие несингулярности дискретного конечнозонного при одной энергии двумерного оператора Шрёдингера на квад-графе”, Функц. анализ и его прил., 49:3 (2015), 65–70  mathnet  crossref  elib; B. O. Vasilevskii, “A Sufficient Nonsingularity Condition for a Discrete Finite-Gap One-Energy Two-Dimensional Schrödinger Operator on the Quad-Graph”, Funct. Anal. Appl., 49:3 (2015), 210–213  crossref  isi
    15. А. В. Казейкина, “Отсутствие солитонов с достаточной алгебраической локализацией для уравнения Веселова–Новикова на ненулевом уровне энергии”, Функц. анализ и его прил., 48:1 (2014), 30–45  mathnet  crossref  mathscinet  zmath  elib; A. V. Kazeykina, “Absence of Solitons with Sufficient Algebraic Localization for the Novikov–Veselov Equation at Nonzero Energy”, Funct. Anal. Appl., 48:1 (2014), 24–35  crossref  isi
    16. А. В. Казейкина, “Отсутствие солитонов кондуктивного типа для уравнения Веселова–Новикова при нулевой энергии”, Функц. анализ и его прил., 47:1 (2013), 79–82  mathnet  crossref  mathscinet  zmath  elib; A. V. Kazeykina, “Absence of Conductivity-Type Solitons for the Novikov–Veselov Equation at Zero Energy”, Funct. Anal. Appl., 47:1 (2013), 64–66  crossref  isi  elib
    17. Р. Г. Новиков, И. А. Тайманов, “Преобразование Мутара и двумерные многоточечные дельтаобразные потенциалы”, УМН, 68:5(413) (2013), 181–182  mathnet  crossref  mathscinet  zmath  adsnasa  elib; R. G. Novikov, I. A. Taimanov, “The Moutard transformation and two-dimensional multipoint delta-type potentials”, Russian Math. Surveys, 68:5 (2013), 957–959  crossref  elib
    18. И. А. Тайманов, С. П. Царев, “Фаддеевские собственные функции двумерных операторов Шредингера, полученные с помощью преобразования Мутара”, ТМФ, 176:3 (2013), 408–416  mathnet  crossref  mathscinet  zmath  adsnasa  elib; I. A. Taimanov, S. P. Tsarev, “Faddeev eigenfunctions for two-dimensional Schrödinger operators via the Moutard transformation”, Theoret. and Math. Phys., 176:3 (2013), 1176–1183  crossref  isi  elib
    19. Б. О. Василевский, “Функция Грина пятиточечной дискретизации двумерного конечнозонного оператора Шрёдингера: случай четырех особых точек на спектральной кривой”, Сиб. матем. журн., 54:6 (2013), 1250–1262  mathnet  mathscinet; B. O. Vasilevskiǐ, “The Green's function of a five-point discretization of a two-dimensional finite-gap Schrödinger operator: The case of four singular points on the spectral curve”, Siberian Math. J., 54:6 (2013), 994–1004  crossref  isi
    20. Е. Ш. Гутшабаш, “Преобразование Мутара и его приложения к некоторым задачам физики. I. Случай двух независимых переменных”, Вопросы квантовой теории поля и статистической физики. 22, Зап. научн. сем. ПОМИ, 398, ПОМИ, СПб., 2012, 100–124  mathnet  mathscinet; E. Sh. Gutshabash, “Moutard transformation and its application to some physical problems. I. The case of two independent variables”, J. Math. Sci. (N. Y.), 192:1 (2013), 57–69  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:509
    PDF полного текста:163
    Список литературы:3
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025